GFS and Friends

Ken Preslan
kpreslan@redhat.com

http://sources.redhat.com/cluster/
http://www.redhat.com/software/rha

Slides:
http://people.redhat.com/kpreslan/gf
s-fosdemO05.pdf



Many Parts

GNBD -- Block over IP driver

CCS -- Cluster Configuration

Fence -- I/O Fencing

GULM -- Centralized Lock Server
CMAN -- Distributed Cluster Manager
GDLM -- Distributed Lock Manager
CLVM - Cluster Volume Manager
GFS -- Cluster Filesystem

Userspace application failover server



Traditional File Server

NFS/CIFS/Apache
Server a bottleneck

Server a single
point of failure

Upgrade path

- Replace with a
bigger server

($$%)

- Add another
server (Data
replication
problems)




Block-based interconnects

* Fibre Channel
* FireWire

* iISCSI

* GNBD

* HyperSCSI

* Many others



Symmetric Shared-Disk
Architecture

MM m



Possible Applications

* Web (http, ftp) serving clusters
* NFS/CIFS serving clusters
e Shared root clusters

e [/O-intensive scientific compute
clusters

e Software build clusters
e Parallel Databases (Oracle)



GFS Basics

Symmetric
Journaled (1 journal per machine)
64-bit

Works like a local filesystem but inter-
machine locks are acquired as
operations occur

Goals

- Flexibility in terms of locking
- Flexibility in terms of block transport



GFS vs a Local FS

Locality not always a good thing

Deadlock ordering for locks affects a lot
Journaling/replay more complicated
Filesystem tree walking has more overhead
Avoidance of central data structures

- Inode tables
- StatFS info

Some Relaxing of semantics: Fuzzy-ness of
quotas, atime, StatFS(soon)



Internal Layout

| ssme

VES

V olume Manager

ceee

&



Older Features

Asynchronous journaling

Multiple journals — one per node

ExHash directories

Online Growable (data space and journals)
Lock caching

Full read and write-back caching

Dynamic Inodes

64-bits everywhere

Deadlock avoidance through lock sorting



New Features since 4.2

Asynchronous locking
Quotas

Extended Attributes
ACLs

Shared locks are shared between
processes

Multi-writer Direct 1/0
Improved unlink/deallocation

Improved allocation algorithms

Improved flock/fcntl()-lock code



New Features since 4.2

Journaled data

FS quiese support

Better response to memory pressure
Better transaction/log code

Ability to convert metadata blocks back to
data blocks

Better NFS support

Coherent shared mmap() support



New Features since 4.2

e Context Dependent Path Names
* Lots of bug fixes
* Lots of cleanup



Asynchronous Locking

* Lock modules and glock layer
rewritten to support async locking

* Glock layer calls into the LM with
request

e .M issues a callback with result

e Allows speedups due to
parallelization of lock requests



Async Locking (Glock)

e Two options:

- Prefetch

- The calling code passes in a structure
that defines the request. That structure
can be polled or slept on

e Main users:
- Prefetch inode locks on readdir
- Statfs
- Optimization acquiring multiple locks
- Unlock



Quotas

* Quotas are fuzzy
e Overruns are tunable

* Trade-off: More accuracy means
more contention

e User and Group quotas
e Usage limit and Warn limit



Quotas

Current quota values are cached in lock
LVBs (to minimize quota file reads)

Quota changes are cached in the filesystem
in per-node areas

Changes are synced back to the quota file
periodically

Changes are also synced more often when
the user gets closer to their limit

Idea is to decouple quota handling as much
as possible from the quota file



Withdraw

A new way for a machine to leave the
cluster

- A machine stops all new I/0O, waits for
pending I/O to complete

- Calls into lock module with withdraw
command

- Another node does all recovery steps but
fencing

e Allows a machine seeing critical I/O or

consistency errors to stop accessing the
filesystem

e Replaces way over-used panic calls



[.ock Module Interface

Lock harness - lightweight, GFS-specific
CI switch

Very lock-centric (VCDLM subset)
Minimal cluster management

Mount, unmount, lock/LVB operations,

plock operations, withdraw, a callback

(completion, blocking, recover-journal),
recover-journal-done

Maps Journal ID to nodes

Handles all GFS inter-node communication



GULM

e Centralized lock/cluster manager
e Up to 5 redundant servers

* Handles membership, quorum,
fencing, and locking

* Very GFS-specific
e Older, stable code

* May offer better performance in
very large compute clusters



CMAN + GDLM

e Modularization allows us to expose the
clustering/locking support developed for
GFES for other systems to use as well
(CLVM, other CFESs)

e Don't expect that CMAN+GDLM will be
useful for everyone, but willing to work
to make it useful for others

e Can be used independently of CLVM or
GFS

* Newer than GULM, still testing



CMAN

* Cluster Manager

* Heavy VaxCluster influence

* Membership events

* Quorum

e Start/Stop of core cluster services

e Accessable from kernel and user
space

e Currently in-kernel, moving to
user-space soon



CMAN

Part 1: Cluster Manager

A cluster has a unique name and ID on the
network

Multiple clusters can exist on network
A node can only join one cluster
All nodes broadcast/multicast heartbeats

First node to detect a failed heartbeat
begins a transition to remove failed node

Multi-step transition makes sure all nodes
are in agreement over new membership



CMAN (quorum)

* Each node in cluster gets a
number of votes

* Cluster has an expected number of
votes

e CMAN determines if cluster is
quorate

e Other subsystems can use this to
regulate operation



CMAN

* Other systems can get a list of

current members (name, nodelD,
[Paddr)

* Other systems can register for
callbacks for membership changes

* Available to kernel or user space



Service Manager

Basic cnxman API not sufficient for GES or
DLLM

Requirement for layered recovery

Requirement for GFS/GDLM to suspended
on all nodes before any node does recovery

Requirement for GDLM to complete
recovery on all nodes before GFS restarts
on any node

Second part of CMAN required: the
Service Manager

For core services only — Userspace servers
(apache, NFS, etc..) handled elsewhere



Service Manger

e Symmetric

* Managers which nodes in the
cluster are using a particular GFS
or GDLM LS

* Represents each GFS or GDLM LS
generically as a “Service Group”

* Manages nodes joining or leaving
SGs



Service Manager

SGs are layered for recovery order

Link from cnxman to SM is: cnxman tells
SM when a node fails, SM starts recovery
for any SMs the failed node was in

Members of a SG are all stopped before
recovery is started

All SGs at a certain level complete
recovery before any SGs at a higher level
are started

SM factors a lot of cluster management
detail out of individual symmetric services
and handles it generically for them.



GDLM

Looks similar to DLM in VMS clusters
Supports many independent lock-spaces

Nodes “join” a lock space to begin
acquiring locks

Runs entirely in the kernel

Heavy use by GFS makes userspace DLM
impractical (performance/latency, memory,
callbacks)

Depends on CMAN for cluster management



Fencing

Generic infrastructure to support I/O fencing
Pluggable agents to support different hardware
About 20 agents currently

Various different methodologies

- Power cycling

- Fencing in I/O path (fabrics, switches)
- Fencing of I/O device (iSCSI, GNBD)
“Easy” to add another method



Fencing

e GULM: GULM master server fences dead client
e CMAN/GDLM:

- Fence system for CLVM/GFS is a simple
userspace daemon controlled by CMAN (SM)

- Fencing is also symmetric (any node can
fence any other)

- Using input from CMAN/SM, fenced decides
who needs to be fenced

- Fenced is just a SM Service Group

- Fenced registers at the lowest level so a node
is fenced before DLM/GFS recovery happens



CCS

* Cluster Configuration system
* XML-based configuration files

* Mostly there to define fencing
methods for nodes

* Configuration files replicated and
kept in sync on all nodes of cluster

* No longer requires shared storage



CLVM

* A userspace daemon layered on
top of LVM2/DM

e Uses CMAN+GDLM (GULM?)

* Working on clustered mirror and
snapshot targets



Future Work

Big short-term targets

- Small file performance

- FSCK speed improvements
- Local storage utilization
Shared Root

File locality controls
Metadata locality to specific devices

Block based file backup support



Future Work

B-Trees instead of allocation bitmaps
File System shrink

Dynamic hotspot elimination

Forced Unmount

I/O load balancing

Range-level locking

DMAPI?



Future Work

e Buffer Passing
* Operation Passing
* Filesystem Snapshotting

 File Versioning



