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Data Stream Processors

Data Stream 
Processor

can set up any data  
pipeline for you
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• sub-second latency and high throughput 
finally coexist

• late data* is handled gracefully

• and btw data stream pipelines run 365/24/7 
consistently without any issues in general. 

• wait…what?

With Data Stream Processors
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So…what about

handling failures!

application updates

reconfiguring/upgrading the system

adding more/less workers

is it realistic to expect the thing run forever correctly?
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we cannot eliminate entropy

but in a fail-recovery model

…we can turn back time and try again
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Let’s talk about Guarantees
guaranteed tuple processing

exactly once!

transactional processing

processing

output

idempotent writes

end-to-end

resilient state
high availability

deterministic processing

delivery

at-least once

at-most once
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1) Processing
• Output
• Delivery
• End-to-End

2)

system

outside world

What Guarantees



Processing Guarantees



Processing Guarantees

• Why should we care?

• Processing creates side effects inside the 
system’s internal state.

• Less or more processing sometimes means 
incorrect internal state.
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Processing Guarantees

• At-Most Once: the system might process less  
(e.g., ignoring data if overloaded) 

• At-Least Once: the system might process more 
(e.g., replaying input) 

• Exactly Once:  the system behaves as if input 
data are processed exactly once



At-Least Once Processing

• Useful when repetition can be tolerated.

• Already offered by logs (e.g., Kafka, Kinesis)

• Manual Logging & Bookkeeping (Storm < v.2)
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Exactly Once Processing

It is a bit trickier. We need to make sure that 

1. Data leaves sides effects only once 

2. Failure Recovery/Re-Scaling do not 
impact the correct execution of the 
system



Exactly Once Processing
A fine-grained solution…

Maintain a log for each operation*

persistent
store

* http://dl.acm.org/citation.cfm?id=2536229
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Exactly Once Processing
A fine-grained solution…

Maintain a log for each operation*

• It allows for fine grained failure recovery and trivial 
reconfiguration. 

• Can be optimised to batch writes 

However: 

• It requires a finely-tuned performant store 

• Can cause aggressive write/append congestion 
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in parallel
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Exactly Once Processing
Now a more coarse-grained approach…
Turn continuous computation into a series of transactions

part 1 part 2 part 3 part 4

each part either completes or repeats

also got to capture the global state of the system(        ) 
after processing each part to resume completely if needed
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Exactly Once Processing

Micro-batching: 

• A fine example of discretely emulating continuous 
processing as a series of transactions. 

• However: 

• It enforces a somewhat inconvenient think-like-a-batch 
logic for a continuous processing programming model. 

• Causes unnecessarily high periodic scheduling 
latency  (can be traded over higher reconfiguration 
latency by pre-scheduling multiple micro-batches* )

*http://shivaram.org/drafts/drizzle.pdf

http://shivaram.org/drafts/drizzle.pdf
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we want to capture
distributed state without

✴ enforcing it in the API or
✴ disrupting the execution

also, do we really need those in-transit events?



“The global-state-detection algorithm is to be 
superimposed on the underlying computation:  

it must run concurrently with, but not alter, this 
underlying computation”

Leslie Lamport



Type 3
Long Running 
Pipelined*

System State 
Store

snap

* https://arxiv.org/abs/1506.08603

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603


Type 3
Long Running 
Pipelined*

System State 
Store

snap

insert markers

* https://arxiv.org/abs/1506.08603

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603


Type 3
Long Running 
Pipelined*

System State 
Store

snap

* https://arxiv.org/abs/1506.08603

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603


Type 3
Long Running 
Pipelined*

System State 
Store

snap

* https://arxiv.org/abs/1506.08603

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603


Type 3
Long Running 
Pipelined*

System State 
Store

snap

* https://arxiv.org/abs/1506.08603

align to prioritise 
records of part 1

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603


Type 3
Long Running 
Pipelined*

System State 
Store

snap

* https://arxiv.org/abs/1506.08603

align to prioritise 
records of part 1

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603


Type 3
Long Running 
Pipelined*

System State 
Store

snap

* https://arxiv.org/abs/1506.08603

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603


Type 3
Long Running 
Pipelined*

System State 
Store

snap

* https://arxiv.org/abs/1506.08603

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603


Type 3
Long Running 
Pipelined*

System State 
Store

snap
got a full snapshot!

with no records  
in-transit

* https://arxiv.org/abs/1506.08603
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Facts about Flink’s Snapshotting
• It pipelines naturally with the data-flow (respecting 

back-pressure etc.) 

• We can get at-least-once processing guarantees 
by simply dropping aligning (try it) 

• Tailors Chandy-Lamport’s original approach* to 
dataflow graphs (with minimal snapshot state & 
messages) 

• It can also work for cycles (with a minor modification)

*http://lamport.azurewebsites.net/pubs/chandy.pdf

http://lamport.azurewebsites.net/pubs/chandy.pdf
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Supporting Cycles
Problem: we cannot wait indefinitely for records in cycles 



Supporting Cycles
Problem: we cannot wait indefinitely for records in cycles 

Solution: log those 
records as part of the 
snapshot. 
Replay upon recovery. 

https://github.com/apache/flink/pull/1668
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• Idempontency ~ repeated operations give the 
same output result. (e.g., Flink’s Cassandra sink*) 

• Rolling Files ~ Pipeline output is bucketed and 
committed when a checkpoint is complete 
otherwise we roll it back. (see Flink’s HDFS 
RollingSink**) 

*https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/connectors/cassandra.html
**https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/connectors/filesystem_sink.html

in-progress pending pending committed

Exactly Once Output

https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/connectors/cassandra.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/connectors/filesystem_sink.html


so no design flaws possible…  
right?

Sir, about that Job Manager…

shoot	here	to	
detonate



>	Abort	Mission!	They	have	HA



High Availability

Zookeeper
State 

• Current Leader (elected) 
• Pending Pipeline Metadata 
• State Snapshot Metadata 

zab

JM JM JM



Perks of using Flink today (v1.2)

• Key-space partitioning and key group allocation 

• Job Rescaling - from snapshots ;) 

• Async state snapshots in Rocksdb

• Managed State Structures - ListState (append only), 
ValueState, ReducingState 

• Externalised Checkpoints for custom cherry picking 
to rollback. 

• Adhoc checkpoints (savepoints)



Coming up next 

Autoscaling 
Incremental Snapshots 

Durable Iterative Processing 
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