
Exactly Once, Large-Scale
Stream Processing in Action

Not Less, Not More

Paris Carbone
Committer @ Apache Flink

PhD Candidate @ KTH

@FOSDEM 2017

@SenorCarbone

Data Stream Processors

Data Stream
Processor

can set up any data
pipeline for you

http://edge.alluremedia.com.au/m/l/2014/10/CoolingPipes.jpg

With Data Stream Processors

• sub-second latency and high throughput
finally coexist

With Data Stream Processors

• sub-second latency and high throughput
finally coexist

• late data* is handled gracefully

With Data Stream Processors

* http://dl.acm.org/citation.cfm?id=2824076

http://dl.acm.org/citation.cfm?id=2824076

• sub-second latency and high throughput
finally coexist

• late data* is handled gracefully

• and btw data stream pipelines run 365/24/7
consistently without any issues in general.

With Data Stream Processors

* http://dl.acm.org/citation.cfm?id=2824076

http://dl.acm.org/citation.cfm?id=2824076

• sub-second latency and high throughput
finally coexist

• late data* is handled gracefully

• and btw data stream pipelines run 365/24/7
consistently without any issues in general.

• wait…what?

With Data Stream Processors

* http://dl.acm.org/citation.cfm?id=2824076

http://dl.acm.org/citation.cfm?id=2824076

So…what about

So…what about

handling failures!

application updates

reconfiguring/upgrading the system

adding more/less workers

So…what about

handling failures!

application updates

reconfiguring/upgrading the system

adding more/less workers

is it realistic to expect the thing run forever correctly?

we cannot eliminate entropy

we cannot eliminate entropy

but in a fail-recovery model

…we can turn back time and try again

Let’s talk about Guarantees

Let’s talk about Guarantees
guaranteed tuple processing

exactly once!

transactional processing

processing

output

idempotent writes

end-to-end

resilient state
high availability

deterministic processing

delivery

at-least once

at-most once

What Guarantees

1) Processing
• Output
• Delivery
• End-to-End

2)

system

outside world

What Guarantees

Processing Guarantees

Processing Guarantees

• Why should we care?

• Processing creates side effects inside the
system’s internal state.

• Less or more processing sometimes means
incorrect internal state.

Processing Guarantees

Processing Guarantees

• At-Most Once: the system might process less
(e.g., ignoring data if overloaded)

• At-Least Once: the system might process more
(e.g., replaying input)

• Exactly Once: the system behaves as if input
data are processed exactly once

At-Least Once Processing

• Useful when repetition can be tolerated.

• Already offered by logs (e.g., Kafka, Kinesis)

• Manual Logging & Bookkeeping (Storm < v.2)

At-Least Once Processing

At-Least Once Processing

1 1 1

1

At-Least Once Processing

1 1

1

At-Least Once Processing

1 1

1

At-Least Once Processing

12 2

2

Exactly Once Processing

Exactly Once Processing

It is a bit trickier. We need to make sure that

1. Data leaves sides effects only once

2. Failure Recovery/Re-Scaling do not
impact the correct execution of the
system

Exactly Once Processing
A fine-grained solution…

Maintain a log for each operation*

persistent
store

* http://dl.acm.org/citation.cfm?id=2536229

1

1 2

1 2

3

http://dl.acm.org/citation.cfm?id=2536229

Exactly Once Processing
A fine-grained solution…

Maintain a log for each operation*

Exactly Once Processing
A fine-grained solution…

Maintain a log for each operation*

• It allows for fine grained failure recovery and trivial
reconfiguration.

• Can be optimised to batch writes

However:

• It requires a finely-tuned performant store

• Can cause aggressive write/append congestion

Remember cassettes?

Remember cassettes?

Remember cassettes?

Remember cassettes?

durable logs similarly allow you to rollback input

Remember cassettes?

durable logs similarly allow you to rollback input

Remember cassettes?

durable logs similarly allow you to rollback input
in parallel

Remember cassettes?

durable logs similarly allow you to rollback input
in parallel

from specific offsets

Remember cassettes?

durable logs similarly allow you to rollback input
in parallel

from specific offsets

Remember cassettes?

durable logs similarly allow you to rollback input
in parallel

from specific offsets

Exactly Once Processing
Now a more coarse-grained approach…
Turn continuous computation into a series of transactions

Exactly Once Processing
Now a more coarse-grained approach…
Turn continuous computation into a series of transactions

part 1

Exactly Once Processing
Now a more coarse-grained approach…
Turn continuous computation into a series of transactions

part 1 part 2

Exactly Once Processing
Now a more coarse-grained approach…
Turn continuous computation into a series of transactions

part 1 part 2 part 3 part 4

Exactly Once Processing
Now a more coarse-grained approach…
Turn continuous computation into a series of transactions

part 1 part 2 part 3 part 4

each part either completes or repeats

Exactly Once Processing
Now a more coarse-grained approach…
Turn continuous computation into a series of transactions

part 1 part 2 part 3 part 4

each part either completes or repeats

also got to capture the global state of the system()
after processing each part to resume completely if needed

Coarse Grained Fault Tolerance - Illustrated

Type 1
Discrete Execution

(micro-batch)

System State
Store

snap

Snap after each part has being processed

Coarse Grained Fault Tolerance - Illustrated

Type 1
Discrete Execution

(micro-batch)
prepare part 1

System State
Store

snap

Snap after each part has being processed

Coarse Grained Fault Tolerance - Illustrated

Type 1
Discrete Execution

(micro-batch)
prepare part 1

System State
Store

snap

Snap after each part has being processed

Coarse Grained Fault Tolerance - Illustrated

Type 1
Discrete Execution

(micro-batch)
prepare part 1

System State
Store

snap

Snap after each part has being processed

Coarse Grained Fault Tolerance - Illustrated

Type 1
Discrete Execution

(micro-batch)
prepare part 2

System State
Store

snap

Snap after each part has being processed

Coarse Grained Fault Tolerance - Illustrated

Type 1
Discrete Execution

(micro-batch)
prepare part 2

System State
Store

snap

Snap after each part has being processed

Coarse Grained Fault Tolerance - Illustrated

Type 1
Discrete Execution

(micro-batch)
prepare part 2

System State
Store

snap

Snap after each part has being processed

Exactly Once Processing

*http://shivaram.org/drafts/drizzle.pdf

http://shivaram.org/drafts/drizzle.pdf

Exactly Once Processing

Micro-batching:

• A fine example of discretely emulating continuous
processing as a series of transactions.

• However:

• It enforces a somewhat inconvenient think-like-a-batch
logic for a continuous processing programming model.

• Causes unnecessarily high periodic scheduling
latency (can be traded over higher reconfiguration
latency by pre-scheduling multiple micro-batches*)

*http://shivaram.org/drafts/drizzle.pdf

http://shivaram.org/drafts/drizzle.pdf

Type 2
Long-Running
Synchronous

System State
Store

snap

Coarse Grained Fault Tolerance - Illustrated

Snap while each part is being processed

Type 2
Long-Running
Synchronous

System State
Store

snap

halt & snap!

Coarse Grained Fault Tolerance - Illustrated

Snap while each part is being processed

Type 2
Long-Running
Synchronous

System State
Store

snap

+

halt & snap!

in-transit
events

to replay

Coarse Grained Fault Tolerance - Illustrated

Snap while each part is being processed

Type 2
Long-Running
Synchronous

System State
Store

snap

+

halt & snap!

in-transit
events

to replay

Coarse Grained Fault Tolerance - Illustrated

Snap while each part is being processed

we want to capture
distributed state without

✴ enforcing it in the API or
✴ disrupting the execution

we want to capture
distributed state without

✴ enforcing it in the API or
✴ disrupting the execution

also, do we really need those in-transit events?

“The global-state-detection algorithm is to be
superimposed on the underlying computation:

it must run concurrently with, but not alter, this
underlying computation”

Leslie Lamport

Type 3
Long Running
Pipelined*

System State
Store

snap

* https://arxiv.org/abs/1506.08603

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603

Type 3
Long Running
Pipelined*

System State
Store

snap

insert markers

* https://arxiv.org/abs/1506.08603

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603

Type 3
Long Running
Pipelined*

System State
Store

snap

* https://arxiv.org/abs/1506.08603

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603

Type 3
Long Running
Pipelined*

System State
Store

snap

* https://arxiv.org/abs/1506.08603

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603

Type 3
Long Running
Pipelined*

System State
Store

snap

* https://arxiv.org/abs/1506.08603

align to prioritise
records of part 1

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603

Type 3
Long Running
Pipelined*

System State
Store

snap

* https://arxiv.org/abs/1506.08603

align to prioritise
records of part 1

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603

Type 3
Long Running
Pipelined*

System State
Store

snap

* https://arxiv.org/abs/1506.08603

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603

Type 3
Long Running
Pipelined*

System State
Store

snap

* https://arxiv.org/abs/1506.08603

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603

Type 3
Long Running
Pipelined*

System State
Store

snap
got a full snapshot!

with no records
in-transit

* https://arxiv.org/abs/1506.08603

Coarse Grained Fault Tolerance - Illustrated

Snap just in time!

https://arxiv.org/abs/1506.08603

Facts about Flink’s Snapshotting

*http://lamport.azurewebsites.net/pubs/chandy.pdf

http://lamport.azurewebsites.net/pubs/chandy.pdf

Facts about Flink’s Snapshotting
• It pipelines naturally with the data-flow (respecting

back-pressure etc.)

• We can get at-least-once processing guarantees
by simply dropping aligning (try it)

• Tailors Chandy-Lamport’s original approach* to
dataflow graphs (with minimal snapshot state &
messages)

• It can also work for cycles (with a minor modification)

*http://lamport.azurewebsites.net/pubs/chandy.pdf

http://lamport.azurewebsites.net/pubs/chandy.pdf

Supporting Cycles

Supporting Cycles
Problem: we cannot wait indefinitely for records in cycles

Supporting Cycles
Problem: we cannot wait indefinitely for records in cycles

Solution: log those
records as part of the
snapshot.
Replay upon recovery.

https://github.com/apache/flink/pull/1668

Output Guarantees

Is this a thing?

Output Guarantees

1. Can’t, it’s distributed

Is this a thing?

Output Guarantees

1. Can’t, it’s distributed

2. Yep easy

Is this a thing?

Output Guarantees

1. Can’t, it’s distributed

2. Yep easy

3. It depends ;)

Is this a thing?

Output Guarantees

1. Can’t, it’s distributed

2. Yep easy

3. It depends ;)

Is this a thing?

Output Guarantees

• Idempontency ~ repeated operations give the
same output result. (e.g., Flink’s Cassandra sink*)

• Rolling Files ~ Pipeline output is bucketed and
committed when a checkpoint is complete
otherwise we roll it back. (see Flink’s HDFS
RollingSink**)

*https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/connectors/cassandra.html
**https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/connectors/filesystem_sink.html

in-progress pending pending committed

Exactly Once Output

https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/connectors/cassandra.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/connectors/filesystem_sink.html

so no design flaws possible…
right?

Sir, about that Job Manager…

shoot	here	to	
detonate

>	Abort	Mission!	They	have	HA

High Availability

Zookeeper
State

• Current Leader (elected)
• Pending Pipeline Metadata
• State Snapshot Metadata

zab

JM JM JM

Perks of using Flink today (v1.2)

• Key-space partitioning and key group allocation

• Job Rescaling - from snapshots ;)

• Async state snapshots in Rocksdb

• Managed State Structures - ListState (append only),
ValueState, ReducingState

• Externalised Checkpoints for custom cherry picking
to rollback.

• Adhoc checkpoints (savepoints)

Coming up next

Autoscaling
Incremental Snapshots

Durable Iterative Processing

Acknowledgements

• Stephan Ewen, Ufuk Celebi, Aljoscha Krettek
(and more folks at dataArtisans)

• Gyula Fóra (King.com)

and all contributors who have put code, effort and thought
to build this unique state management system.

Exactly Once, Large-Scale
Stream Processing in Action

Not Less, Not More

@SenorCarbone

