[E DASK

Apache Flink

“beam

Accelerating
Big Data Beyond the JVM

Engine noises go here
@holdenkarau

»

@ python’

Holden:

My name is Holden Karau

Prefered pronouns are she/her

Developer Advocate at Google

Apache Spark PMC :)

previously IBM, Alpine, Databricks, Google, Foursquare & Amazon
co-author of Learning Spark & High Performance Spark
@holdenkarau

Slide share http://www.slideshare.net/hkarau

Linkedin https://www.linkedin.com/in/holdenkarau
Github https://github.com/holdenk

Spark Videos htip://bit.ly/holdenSparkVideos

https://twitter.com/holdenkarau
http://www.slideshare.net/hkarau
https://www.linkedin.com/in/holdenkarau
https://github.com/holdenk
http://bit.ly/holdenSparkVideos

Who | think you wonderful humans are?

Nice enough people

Don’t mind pictures of cats
Might know some the different distributed systems talked about
Possibly know some Python or R

Or are tired of scala/ java

https://www.flickr.com/photos/lorika/

What are these systems for?

e “Big Data”
o Which varies from: it doesn't fit on your macbook to
the largest AWS/GCP server you can rent)
e Involve both the distribution of Data & Processing
e Most are written in the JVM (but not all)

What will be covered?

A more detailed look at the current state of PySpark

Why it isn't good enough

Why things are finally changing

A brief tour of options for non-JVM languages in the Big Data space

My even less subtle attempts to get you to buy my new book

Pictures of cats & stuffed animals

tl;dr - We've* made some bad** choices historically, and projects like Arrow &
friends can save us from some of these (yay!)

What's the state of non-JVM big data”

David Brown

Most of the tools are built in the JVM, so how do we play together?

e Pickling, Strings, JSON, XML, oh my!
e Unix pipes
e Sockets

What about if we don’t want to copy the data all the time?
e Or standalone “pure™ re-implementations of everything

o Reasonable option for things like Kafka where you would have the 1/O regardless.
o Also cool projects like dask (pure python) -- but hard to talk to existing ecosystem

PySpark:

e The Python interface to Spark

e Same general technique used as the bases for the C#, R, Julia, etc.
interfaces to Spark

e Fairly mature, integrates well-ish into the ecosystem, less a Pythonrific API

e Has some serious performance hurdles from the design

Yes, we have wordcount! :p

lines = sc.textFile(src) .
words = lines.flatMap(lambda x: x.split(" ")) combined and

executed in

word count = one python
o executor
(words.map(lambda x: (x, 1)) No data is read or

processed until after

reduceByKey(lambda X, y: x+y)) thisline

word_count.saveAsTextFile(output)

\ This is an “action”

which forces spark to
evaluate the RDD

A quick detour into PySpark’s internals

Spark in Scala, how does PySpark work?

e Py4J + pickling + JSON and magic
o Py4jin the driver
o Pipes to start python process from java exec
o cloudPickle to serialize data between JVM and python executors
(transmitted via sockets)
o Json for dataframe schema

e Data from Spark worker serialized and piped to Python
worker --> then piped back to jvm

o Multiple iterator-to-iterator transformations are still pipelined :)
o So serialization happens only once per stage

e Spark SQL (and DataFrames) avoid some of this

So what does that look like?

Worker 1

. 4
Driver =S <P
Java pipe

Ao S
)

Worker K
S,

lva_PIPE

And in flink....

Worker 1

: ¢
Driver =2 <>
Java mmap

P <> ‘ﬁ’
java °
custom

Worker K

So how does that impact PySpark?

Double serialization cost makes everything more
expensive

Python worker startup takes a bit of extra time

Python memory isn’t controlled by the JVM - easy to go
over container limits if deploying on YARN or similar
Error messages make ~0 sense

Spark Features aren’t automatically exposed, but
exposing them is normally simple

Our saviour from serialization: DataFrames E&

e For the most part keeps data in the JVM

o Notable exception is UDFs written in Python

e Takes our python calls and turns it into a query plan if
we need more than the native operations in Spark’s
DataFrames

e Dbe wary of Distributed Systems bringing claims of
usabillity....

So what are Spark DataFrames?

More than SQL tables

Not Pandas or R DataFrames
Semi-structured (have schema information)
tabular

work on expression as well as lambdas
o e.g. df filter(df.col(*happy”) == true) instead of rdd.filter(lambda x:
x.happy == true))

e Not a subset of Spark “Datasets” - since Dataset API
iIsn't exposed in Python yet :(

Word count w/Dataframes Still have the double

serialization here :(

df = sqlCtx.read.load(src)
Returns an RDD

words = df.select("text").flatMap(lambda x: x.text.split(" "))
words_df = words.map(

lambda x: Row(word=x, cnt=1)).toDF()
word_count = words_df.groupBy("word").sum()
word_count.write.format("parquet”).save("wc.parquet”)

We can see the difference easily:

Python Compute average
600000000

I RCD
reduceB. ..
B RCD
450000000 groupBy...
I DataFrame
groupBy
300000000
*Vendor
150000000

benchmark.
Trust but verify.

The “future™: faster interchange

e By future | mean availability starting in the next 3-6 months (with more

improvements after).
o Yes much of this code exists, it just isn’t released yet so I'm sure we’ll find all sorts of bugs
and ways to improve.
o Relatedly you can help us test in Spark 2.3 when we start the RC process to catch bug early!
e Unifying our cross-language experience
o And not just “normal” languages, CUDA counts yo

+ -.|..- '-_" 1 B
1. i o -"'l--n- - -|.|.

i "erly the future. | really hope so. Spark 2.3 and beyon

r
i
™

What does the future look like?*

*Source:

Performance Comparision (Shorter is better)

300

5 242
200
-
3
& 150
E 117
=
100
50
3.15 0.9 14 7.2
0 f—— _
plus one cdf subtract mean

M row-at-a-time M vectorized

https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html.

*Vendor
benchmark.
Trust but verify.

https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html

Arrow (a poorly drawn big data view)

Logos trademarks of their respective projects

Rewriting your code because why not

spark.catalog.registerFunction(
"add", lambda x, y: x + y, IntegerType())

add = pandas_udf(lambda x, y: x + y, IntegerType())

Hadoop “streaming” (Python/R)

Lisa Lafsson

e Unix pipes!
e Involves a data copy, formats get sad
e But the overhead of a Map/Reduce task is pretty high anyways...

What do the rest of the systems do? P

Kate Neilan

e Spoiler: mostly it's not better
e Different tradeoffs, maybe better for your use case but all tradeoffs

Kafka: re-implement all the things

e Multiple options for connecting to Kafka from outside of the JVM (yay!)

e They implement the protocol to talk to Kafka (yay!)

e This involves duplicated client work, and sometimes the clients can be slow
(solution, FFI bindings to C instead of Java)

e Buuuut -- we can'’t access all of the cool Kafka business (like Kafka Streams)
and features depend on client libraries implementing them (easy to slip below

parity)

Dask: a new beginning?

Lisa Zins -

Pure* python implementation

Provides real enough DataFrame interface for distributed data
Also your standard-ish distributed collections

Multiple backends

Primary challenge: interacting with the rest of the big data ecosystem
o Arrow & friends might make this better with time too, buuut....

e See https://dask.pydata.org/en/latest/ &
http://dask.pyvdata.org/en/latest/spark.html

https://dask.pydata.org/en/latest/
http://dask.pydata.org/en/latest/spark.html

3

BEAM Beyond the JVM

e Non JVM BEAM doesn’t work outside of Google’s environment yet
e tl;dr: uses grpc / protobuf
o Similar to the common design but with more efficient representations (often)
e But exciting new plans to unify the runners and ease the support of different
languages (called SDKS)
o See https://beam.apache.org/contribute/portability/

e [f this is exciting, you can come join me on making BEAM work in Python3
o Yes we still don’t have that :(
o But we're getting closer & you can come join us on BEAM-2874 :D

https://beam.apache.org/contribute/portability/
https://issues.apache.org/jira/browse/BEAM-2784

References

PROR. Crap Mariner

e Apache Arrow: hitps://arrow.apache.org/

e Brian (IBM) on initial Spark + Arrow
https://arrow.apache.ora/blog/2017/07/26/spark-arrow/

e LiJin (two sigma)
https://databricks.com/bloa/2017/10/30/introducing-vectorized-udfs-for-pyspar
K.html

e Bill Maimone
https://blogs.nvidia.com/blog/2017/06/27/gpu-computation-visualization/

https://arrow.apache.org/
https://arrow.apache.org/blog/2017/07/26/spark-arrow/
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://blogs.nvidia.com/blog/2017/06/27/gpu-computation-visualization/

OREILLY"

nark

_ "IN ACTION

Fast Data Processing
with Spark
Second Edition

w, Andy Konwinski,
Patrick Wendell & Matei Zaharia

Fast Datla . Spark in Action
Processing with | ez

Spark
(2nd edition)

OREILLY

Tomasz Drabas, Denny Lee

High Performance

Spark

Advanced
Analytics with

DipIS

Learning

Fast Data Processing
with Spark

PySpark

B TR

Sandy Ryza, Uri Laserson,

Fast Data e :
Processing with P s
Spark Advanced
, P ,
Learning PySpark (Out of Date) Analytics with ~ High Performance Spark

Spark

http://bit.ly/learning-spark-presentation
http://bit.ly/learning-spark-presentation
http://bit.ly/fast-data-processing-presentation
http://bit.ly/fast-data-processing-presentation
http://bit.ly/fast-data-processing-with-spark-2nd-edition
http://bit.ly/fast-data-processing-with-spark-2nd-edition
http://bit.ly/advanced-analytics-spark
http://www.manning.com/bonaci/
http://www.highperformancespark.com

High Performance

Spark

High Performance Spark!

You can buy it today, the O’Reilly folks have it upstairs (&
so does Amazon).

Only one chapter on non-JVM and nothing on Arrow, I'm
sorry.

Cats love it*

*Or at least the box it comes in. If buying for a cat, get print
rather than e-book.

https://www.amazon.nl/High-Performance-Spark-Practices-Optimizing-ebook/dp/B0725YT69J/ref=sr_1_1?ie=UTF8&qid=1517738932&sr=8-1&keywords=high+performance+spark

Spark Videos

e Apache Spark Youtube Channel

e My Spark videos on YouTube -
o http://bit.ly/holdenSparkVideos

e Spark Summit 2014 training
e Paco’s Introduction to Apache Spark

https://www.youtube.com/channel/UCRzsq7k4-kT-h3TDUBQ82-w
http://bit.ly/holdenSparkVideos
http://bit.ly/holdenSparkVideos
https://spark-summit.org/2014/training
http://bit.ly/intro-to-apache-spark-paco-video

And some upcoming talks:

e Maybe office hours @ 6pm today if interest?”
o Tweet at me (@holdenkarau) if interested+free, otherwise I'll go find
chocolate :)

JFokus - Surprisingly mostly talking about Python....
Strata San Jose

Strata London

QCon Brasil

QCon Al SF

. benchmarks’? Share your UDF:
> httpi/ibit.ly/pySparkUDFE

......

_If you care about Spark testing and
dsDn t hate surveys:
http: //b|t Iv/hoIdenTestlnqSQark

W febd to give a testing talk next
* month, help a “friend” out.

. Pssst: Havé feedback on the pfesentation? Give me a
shout () if you feel comfortable‘doing
SO)

Bt P

http://bit.ly/holdenTestingSpark
https://twitter.com/holdenkarau
http://bit.ly/pySparkUDF
mailto:holden@pigscanfly.ca
http://bit.ly/holdenTalkFeedback

Beyond wordcount: depencies?

e Your machines probably already have pandas
o But maybe an old version

But they might not have “special business logic”
o Very special business logic, no one wants change fortran code®*.

Option 1: Talk to your vendor**

Option 2: Try some open source software
Option 3: Containers containers containers™**
Option 4: Any of this mornings talks

We're going to focus on option 2!

*Because it's perfect, it is fortran after all.

** | don't like this option because the vendor | work for doesn’t have an answer.

*** Great for your resume!

coffee_boat to the rescue*

You can tell it's alpha cause were installing from github
Ipip install --upgrade
git+https://github.com/nteract/coffee boat.git
Use the coffee boat

from coffee_boat import Captain

captain = Captain(accept conda license=True)
captain.add pip_ packages(“pyarrow"”, "edtf")
captain.launch_ship()

sc = SparkContext(master="yarn")

You can now use pyarrow & edtf

captain.add pip_packages("yourmagic")

You can now use yourmagic in transformations!

Bonus Slides

Maybe you ask a question and we go here :)

i

Why now? e

Andrew Mager

e There’s been better formats/options for a long time

e JVM devs want to use libraries in other languages with lots of data
o e.g. startup + Deep Learning + ? => profit
e Arrow has solved the chicken-egg problem by building not just the chicken &
the egg, but also a hen house

What's still going to hurt?

e Per-record streaming
o Arrow is probably less awesome for serialization
o Butit’s still better than we had before

e Debugging is just going to get worse
e Custom data formats

o Time to bust out the C++ code and a bottle of scotch / matte as appropriate
o Or just accept the “legacy” performance

We can do that w/Kafka streams..

e Why bother learning from our mistakes?
e Or more seriously, the mistakes weren't that bad...

Our “special” business logic

def transform(input): Persor AR

mimnn

Transforms the supplied input.

mimn

return str(len(input))

Let’s pretend all the world is a string:

override def transform(value: String): String = {
// WARNING: This may summon cuthuluhu
dataOut.writeInt(value.getBytes.size)
dataOut.write(value.getBytes)
dataOut.flush()
val resultSize = dataln.readInt()
val result = new Array|[Byte](resultSize)
dataln.readFully(result)
// Assume UTF8, what could go wrong? :p
new String(result)

}

From https://qithub.com/holdenk/kafka-streams-python-cthulhu

https://github.com/holdenk/kafka-streams-python-cthulhu

Then make an instance to use it...

val testFuncFile =
"kafka streams python cthulhu/strlen.py"
stream.transformValues(
PythonStringValueTransformerSupplier (testFuncFile))
// Or we could wrap this in the bridge but thats effort.

From https://qithub.com/holdenk/kafka-streams-python-cthulhu

https://github.com/holdenk/kafka-streams-python-cthulhu

Let’s pretend all the world is a string:

def main(socket):
while (True):
input_length = read int(socket)
data = socket.read(input_length)
result = transform(data)
resultBytes = result.encode()

_write int(len(resultBytes), socket)
socket.write(resultBytes)
socket.flush()

From https://qithub.com/holdenk/kafka-streams-python-cthulhu

https://github.com/holdenk/kafka-streams-python-cthulhu

What does that let us do?

e You can add a map stage with your data scientists
Python code in the middle

e You're limited to strings*

e Still missing the “driver side” integration (e.g. the

interface requires someone to make a Scala class at
some point)

What about things other than strings?

Use another system
e Like Spark! (oh wait) or BEAM* or FLINK*?
Write it in a format Python can understand:

e Pickling (from Java)
e JSON
o XML

Purely Python solutions
e Currently roll-your-own (but not that bad)

*These are also JVM based solutions calling into Python. I’'m not saying they will also summon Cuthulhu, I'm just saying hang onto
vour sotils

