
Containerised Storage for Containers

@JeffryMolanus		
@openEBS	
www.openebs.io	

FOSDEM	Feb	2018	

What if storage for container
native applications was itself

container native?

• Originally — storage consolidation was done for
efficiency reasons in terms of performance and
capacity
– Easier data management

• Originating in the LAN (Novell, 80s),
– Special MS-DOS TSRs to “login in” to the network
– Novell Application Launcher, IPX/SPX

• Quickly became a dedicated network (00’s)
– Specialised HW — appliances
– Separate network (FC) switches and cross DC interconnects

How Did We Get Here?

• Typical HA SAN/NAS
• shared storage

• Front-end back-end
• HW & SW
• NVRAM, PCI cache
• Relatively small CPUs

• HA failover with in 180s
• Fine tuning of OS-es

• Unified storage
• Block and file services
• virtual tape (VTL, B2D)

• Storage features
• snapshots, clones,

dedup, replication

Storage
Network

• As hardware evolved, the hardware
differentiator became less of of thing
compared to open source systems
• Gluster, Sheepdog, Ceph, FreeNAS

• Commodity hardware, off the shelf
• FC almost died, FCoE born dead
• SAS is the new FC; JBODs

• Faster devices (SSD) removed the need for
specialised NVRAM and PCI caches

• Architecture did not change

Software Defined Storage

• Apps have changed somebody forgot to tell storage
• Modern apps have native scalability features

– load balancers, database sharding, Paxos and RAFT
• Apps deployment; scale up and down on demand

– K8s based on the google borg paper
– How to make that work across different storage flavours?

• Apps are designed to fail across DC’s and even regions
– Data availability is not exclusively controlled at the storage layer

• Friction between teams
– Attempt to duck tape with ”volume plugins” as the arch is the same
– Typically does not allow for storage management capabilities

Then Containers (re)happend

Containers & k8s

Manifests express
intent

K8S used with	special	care	for apps requiring persistence because
they require brittle tight coupling.

Hard wired connections via plug-in
“IO	Blender”

Container 1
(Node1)

Container 2
(Node	2)

Container 3
(Node	3)

stateless stateful

Container 1 Container 2 Container 3

Container 1 Container 2 Container 3

NAS SAN S3 NAS Cloud

Any Server, Any Cloud

Containers & k8s

Manifests express
intent

stateless

Container 1 Container 2 Container 3

Container 1 Container 2 Container 3

Container 1 Container 2 Container 3

stateful

Data	Container Data	Container Data	Container

Any Server, Any Cloud Any Server, Any Cloud

kubectl apply -f https://openebs.github.io/charts/openebs-operator.yaml

kubectl apply –f percona.yaml

kubectl get pods | grep pvc

pvc-8a9fc4b1-d838-11e7-9caa-42010a8000a7-ctrl-696530238-ngrgj 2/2 Running 0 36s 

pvc-8a9fc4b1-d838-11e7-9caa-42010a8000a7-rep-3408218758-2ldzv 1/1 Running 0 36s 

pvc-8a9fc4b1-d838-11e7-9caa-42010a8000a7-rep-3408218758-6mwj5 1/1 Running 0 36s

Example

Storage	just	fades	away	as	a	concern

• It is not a distributed filesystem
– Hard to manage in production and even harder to debug?
– Non standard “drivers” to unleash full potential

• Containerised workloads are segregated and thus inherently
small
– Do we need to scale capacity to PBs, scale out?
– Untangled datasets

• Hardware trends enforce a change in the way we do things
– Architecture change, finally?
– Single NMVe devices up to 400K IOPS, scale out?

• Typically container apps are already distributed by nature
– App performance loosely coupled from storage and scale themselves

What OpenEBS is not

Comparison

controller

replica replica replica

app

• The actual storage service component to which the client
connects – the frontend
– iSCSI, iSER, NMVeoF
– Future ideas do include file bases access (NFS, SMB)

• Proxy to a Pluggable backend that allows us to change the
the part that actually persists the data (replica)

• Declarative state: define the number or replicas, snapshot
schedules, etc

• Consistency levels, one, quorum or all
– DC aware

Controller

• DMU layer of ZFS, well proven and battle tested FS
• Each write is assigned to a transaction

– Transactions are batched in transaction groups
– Transaction group numbers are updated atomically which means

that all write either succeed or fail
• Pooled storage model

– VMM type like allocation (rampant layer violation, 2006)
• End to end data integrity
• Runs in a container and hence in user space

– No kernel dependencies or DKMS
– Does not taint the kernel

Replica engine(s)

cMotion

US-Central

CentOS

EU-East

Ubuntu

US-East

SUSE

• People who think that user space filesystems are realistic for anything
but toys are just misguided (2011)

• How to achieve high performance numbers from user space
– Context switches
– Copying (in and out)
– DMA transfers

• With current hardware trends the kernel actually becomes the bottle
neck
– 100GB networks
– NVMe devices, 3D X-point

• Frequency remains relativity steady – core count goes up
– Idle cores?

Storage performance

Scaling IO

• Bypass the kernel altogether in the IO
path, running everything in user space
(UIO and SPDK)

• Dedicate core(s) that does IO polling
instead of interrupt driven
– Poll Mode Drivers (PMD) with different

implementations, container unfriendly
• Containerise all IO devices – IOC

– Consumers submit IO to the IOC instead of
the kernel

– A user space “devfs”
• But how to access the devices and

sharing them (potentially) with one or
more processes?
– Typically done by the kernel

Storage performance

Storage performance II

IOC

replica

targettarget xyz

replica
NIC		
&		

SSD/HDD	
	&		
CPU

• Reuse proven technology VHOST and virtio-{scsi,blk}
– In user space vhost-user (part of SPDK)

• IOC exposes VHOST interface to the “outside”
• Replica containers connect using virtio-scsi

– Replica exposes sockets to target for read/write
– Unfortunately, there is no virtio-scsi library (WIP)

• Allocate huge pages and pin them
– Suitable for DMA transfers

• Future work
– Explore further integration with FD.IO
– VPP-VCL in particular

Storage performance III

VHOST USER

VHOST

Virtio-scsi

VHOST

Virtio-scsi

Host Huge	shared	pages virtqueue

IPC

• Bring advanced storage feature to individual container
workloads
• COW, data integrity, storage reduction, snapshotting and

replication
• Cloud native; using the same software development

paradigm
• Build for containers in containers

• Implemented fully in user space
• Avoid congestion in kernel
• multi cloud

• Declarative provisioning and protection policies
• Remove friction between teams

• Not a clustered storage instance rather a cluster of storage
instances

Summary about OpenEBS

QUESTIONS?

www.openebs.io

