@JeffryMolanus
@openEBS
www.openebs.io

FOSDEM Feb 2018

OUpeneB5S

Containerised Storage for Containers

What If storage for container
native applications was ifself
container nativee

OpeneBS

How Did We Get Heree

* Qriginally — storage consolidation was done for
efficiency reasons in terms of performance and
capacity
— Easier data management

* Originating in the LAN (Novell, 80s),
— Special MS-DOS TSRs to “login in” to the network
— Novell Application Launcher, IPX/SPX

* Quickly became a dedicated network (00’s)
— Specialised HW — appliances
— Separate network (FC) switches and cross DC inferconnects

peneEBS

Typical HA SAN/NAS

* shared storage

Front-end back-end

* HW & SW

* NVRAM, PCIl cache

* Relatively small CPUs

HA failover with in 180s

* Fine tuning of OS-es

Unified storage

* Block and file services

* virtual tfape (VIL, B2D)

Storage features

* snapshots, clones,
dedup, replication

Storage
Network

Software Defined Storage

As hardware evolved, the hardware

differentiator became less of of thing

compared to open source systems
Gluster, Sheepdog, Ceph, FreeNAS

commodity hardware, off the shelf

FC almost died, FCoE born dead
SAS is the new FC; JBODs

Faster devices (SSD) removed the need for
specialised NVRAM and PCIl caches

Architecture did not change

pentl

Then Containers (re)happend

Apps have changed somebody forgot to tell storage

Modern apps have native scalabllity features
— load balancers, database sharding, Paxos and RAFT

Apps deployment; scale up and down on demand
— K8s based on the google borg paper
— How to make that work across different storage flavours?

Apps are designed to fail across DC's and even regions

— Data availability is not exclusively controlled at the storage layer
Friction between teams

— Attempt to duck tape with "volume plugins” as the arch is the same

— Typically does not allow for storage management capabillities

pen

Containers & k8s

Manifests express . K8S used with special care for apps requiring persistence because
intent @!

' they require brittle tight coupling.
l stateless & /> I stateful

Container 1 Container 2 Container 3
(Node 3)
et
Hard wired connections via plug-in

= =t
=
==
| O

Any Server, Any Cloud

mmm---90O

TR =]

o 0000}

peneB5S

Containers & k8s

Manifests express

'S
intent @! '
l stateless L lq) I stateful |

ko
m

= EEAn = EEAR

Any Server, Any Cloud Any Server, Any Cloud

mm---9Q

TN =)

[o 000}

o 0000}
o 0000)

pentEBS

Example

kubectl apply -f hitps://openebs.github.io/charts/openebs-operator.yaml

kubectl apply —f percona.yaml

kubectl get pods | grep pvc

pvc-8a9fc4b1-d838-11e7-9caa-42010a8000a7-cirl-696530238-ngrgj 2/2 Running 0 36s
pvc-8a9fc4b1-d838-11e7-9caa-42010a8000a7-rep-3408218758-2ldzv 1/1 Running 0 365
pvc-8a9fc4b1-d838-11e7-9caa-42010a8000a7-rep-3408218758-6mwjs 1/1 Running 0 365

Storage just fades away o e

OpeneBS

What OpenEBS Is not

It is not a distributed filesystem

— Hard to manage in production and even harder to debug?

— Non standard “drivers” to unleash full potential

Containerised workloads are segregated and thus inherently
small

— Do we need to scale capacity to PBs, scale oute

— Untangled datasets

Hardware trends enforce a change in the way we do things
— Architecture change, finally?
— Single NMVe devices up to 400K IOPS, scale out?

Typically container apps are already distributed by nature
— App performance loosely coupled from storage and scale themselves

peneEBS

replica

app

controller

replica

&

replica

2015 U 2015054 55

‘5-__- S
13 3

Comparison

EE EBE EE

V'¥Yiware HA, Cluster

[

I

Controller

The actual storage service component to which the client
connects — the frontend

— iSCSI, ISER, NMVeoF
— Future ideas do include file bases access (NFS, SMB)

Proxy to a Pluggable backend that allows us to change the
the part that actually persists the data (replica)

Declarative state: define the number or replicas, snapshot
schedules, etc

Consistency levels, one, quorum or all
— DC aware

peneEBS

Replica engine(s)

DMU layer of ZFS, well proven and battle tested FS

Each write is assigned to a transaction
— Transactions are batched in fransaction groups

— Transaction group numbers are updated atomically which means

that all write either succeed or fail

Pooled storage model
— VMM type like allocation (rampant layer violation, 2006)

End to end data integrity

Runs in a container and hence in user space
— No kernel dependencies or DKMS
— Does not taint the kernel

pen

cMotion

€

O

US-Central

CentOS

—— o —

EU-East

Ubuntu

US-East

SUSE

pen

Storage performance

People who think that user space filesystems are realistic for anything
but toys are just misguided (2011)

How to achieve high performance numbers from user space

— Context switches

— Copying (in and out)

— DMA transfers

With current hardware trends the kernel actually becomes the bottle
neck

— 100GB networks

— NVMe devices, 3D X-point

Frequency remains relativity steady — core count goes up

— |dle cores?

pen

/O Performance on
Single Intel® Xeon® core

I!JJJJJ.

Number of NVMe SSDs

16000

12000

8000

4000

Scaling IO

GET

pen

Storage performance

Bypass the kernel altogether in the 1O
path, running everything in user space
(UIO and SPDK)

Dedicate core(s) that does O polling

Instead of interrupt driven S

— Poll Mode Drivers (PMD) with different e = e s
implementations, container unfriendly :

Containerise all IO devices — 10C | i el

— Consumers submit IO to the I0OC instead of | oramsousoxponopnc |

the kernel T S T S
— A user space “devfs”
But how to access the devices and
sharing them (potentially) with one or
Mmore processess
— Typically done by the kernel

peneEBS

Storage performance |

target target

‘ replica replica
NIC

&
SSD/HDD
&
CPU

peneEBS

Storage pertformance |l

Reuse proven technology VHOST and virtio-{scsi,blk}
— In user space vhost-user (part of SPDK)

IOC exposes VHOST interface to the Youtside”

Replica conftainers connect using Virtio-scsi
— Replica exposes sockets to target for read/write
— Unfortunately, there is no virtio-scsi library (WIP)

Allocate huge pages and pin them
— Suitable for DMA fransfers

Future work
— Explore further integration with FD.IO
— VPP-VCL in particular

pen

VHOST USER

IP

Host

peneEBS

Summary about OpenEBS

« Bring advanced storage feature to individual container
workloads

« COW, data integrity, storage reduction, snapshotting and
replication

* Cloud native; using the same software development
paradigm
* Build for containers in containers
* Implemented fully in user space
* Avoid congestion in kernel
* multi cloud

« Declarative provisioning and protection policies
* Remove friction between teams

* Not a clustered storage instance rather a cluster of storage
instances

pen

QUESTIONS?

n

www.openebs.io

