
G-CORE: A Core for Future Graph
Query Languages

Hannes Voigt
hannes.voigt@tu-dresden.de

FOSDEM Graph – Feb 3rd, 2018

Designed by the LDBC Graph Query Language Task Force

http://bit.ly/gcorelanguage · @LDBCouncil

My Background
• Ph.D. from TU Dresden
• Postdoc at Database System Group,

TU Dresden
• Research in Graph Data Management, Schema Evolution,

DBMS Schema Flexibility, Adaptive Indexing
• Member of LDBC Graph Query Language Taskforce
• Graph-related industry activities

with SAP HANA Graph
and openCypher

2

Linked Data Benchmark Council (LDBC)
• LDBC is a non-profit organization dedicated to establishing

benchmarks, benchmark practices and benchmark results
for graph data management software.

• LDBC was established as an outcome of the LDBC EU
project funded by the European Commission within the 7th
Framework Programme (Grant Agreement No. 317548).

http://ldbcouncil.org/

LDBC Graph Query Language Task Force
• Recommend a query language core that could be incorporated in future

versions of industrial graph query languages.
• Perform deep academic analysis of the expressiveness and complexity of

evaluation of the query language
• Ensure a powerful yet practical query language

Academia Industry
Renzo Angles, Universidad de Talca Alastair Green, Neo4j

Marcelo Arenas, PUC Chile Tobias Lindaaker, Neo4j

Pablo Barceló, Universidad de Chile Marcus Paradies, SAP

Peter Boncz, CWI Stefan Plantikow, Neo4j

George Fletcher, Eindhoven University of Technology Arnau Prat, Sparsity

Claudio Gutierrez, Universidad de Chile Juan Sequeda, Capsenta

Hannes Voigt, TU Dresden Oskar van Rest, Oracle

Result

5

Preprint: http://bit.ly/gcorelanguageSIGMOD 2018

DISCLAIMER
WHAT IS NOT G-CORE

6

WHAT IS G-CORE
Graph Database System Graph Query Language

Another Standard

Proposal which we hope will guide the
evolution of both existing and future
graph query languages, towards
making them more useful, powerful
and expressive

Commercial/Proprietary

Designed by the LDBC Graph Query
Language Task Force, consisting of
members from industry and academia,
intending to bring the best of both
worlds to graph practitioners

Property Graph Data Model

id: 123
name: Juan Sequeda

Person
id: 456
name: Marcelo Arenas

Person
knows

since: 2010

Challenges and G-CORE Principles
• Composability à
– Query results can be query inputs
– Important for views & sub-queries

• Paths à
– Fundamental to graphs
– Increase the expressivity of the

language
• Capture a core à
– Standards are difficult and

politics
– Foundation to develop next

generation of languages

8

• Closed QL
– Graphs as query input and output
– Queries can be composed

• Paths are First Class Citizens
– Graph model with path objects
– Paths objects can have labels

and properties
• Efficient Evaluation
– Only features with tractable

evaluation (in data complexity)
– connects practical work with the

foundational research

Challenges and G-CORE Principles
• Composability à
– Query results can be query inputs
– Important for views & sub-queries

• Paths à
– Fundamental to graphs
– Increase the expressivity of the

language
• Capture a core à
– Standards are difficult and

politics
– Foundation to develop next

generation of languages

9

• Closed QL
– Graphs as query input and output
– Queries can be composed

• Paths are First Class Citizens
– Graph model with path objects
– Paths objects can have labels

and properties
• Efficient Evaluation
– Only features with tractable

evaluation (in data complexity)
– connects practical work with the

foundational research

Challenges and G-CORE Principles
• Composability à
– Query results can be query inputs
– Important for views & sub-queries

• Paths à
– Fundamental to graphs
– Increase the expressivity of the

language
• Capture a core à
– Standards are difficult and

politics
– Foundation to develop next

generation of languages

10

• Closed QL
– Graphs as query input and output
– Queries can be composed

• Paths are First Class Citizens
– Graph model with path objects
– Paths objects can have labels

and properties
• Efficient Evaluation
– Only features with tractable

evaluation (in data complexity)
– connects practical work with the

foundational research

Closed QL and Query Composition

11

Concept Chasm
• Users talk about…

– Application entities
– e.g. discussions, communities,

topics, etc.
– Multiple abstraction

levels

• Base data contains…
– Fine granular data
– Low abstraction
– E.g. individual

twitter messages,
retweet relationships,
etc.

[Martin Grandjean, https://commons.wikimedia.org/wiki/File:Social_Network_Analysis_Visualization.png, 2014]

[http://nodexlgraphgallery.org/Pages/Graph.aspx?graphID=70790]

Query
language main

means to
bridge

concept
chasm

Users talk in high level concepts ⬌ Data captured in low level concepts
⤷ Concept chasm

13

Example Graph
social_graph:

Always returning a graph

• CONSTRUCT clause: Every query returns a graph
• New graph with only nodes, namely those persons who

work at Acme
• All the labels and properties that these person nodes had in
social_graph are preserved in the returned result graph.

14

CONSTRUCT (n)
MATCH (n:Person) ON social_graph
WHERE n.employer = 'Acme'

Syntax inspired
by Neo4j’s
Cypher and
Oracle’s PGQL

Multi-Graph Queries and Joins
• Simple data integration query

• Load company nodes into company_graph
• Create a unified graph (UNION) where employees and

companies are connected with an edge labeled worksAt.

15

CONSTRUCT (c)<-[e:worksAt]-(n)
MATCH (c:Company) ON company_graph,

(n:Person) ON social_graph
WHERE c.name IN n.employer
UNION social_graph

Graph Construction
• Normalize Data, turn property values into nodes

• The unbound destination node x would create a company
node for each match result (binding).
• This is not what we want: we want only one company per

unique name ... So ...

16

CONSTRUCT (n)-[y:worksAt]->
(x:Company {name:=e})

MATCH (n:Person {employer=e}) ON social_graph

Graph Aggregation

• Graph aggregation: GROUP clause in each graph pattern
element
• Result: One company node for each unique value of e in the

binding set is created

17

CONSTRUCT (n)-[y:worksAt]->
(x GROUP e :Company {name:=e})

MATCH (n:Person {employer=e}) ON social_graph

Graph Aggregation

• Graph aggregation: GROUP clause in each graph pattern
element
• Result: One company node for each unique value of e in the

binding set is created

18

CONSTRUCT (n)-[y:worksAt]->
(x GROUP e :Company {name:=e, noEmpl:=COUNT(x)})

MATCH (n:Person {employer=e}) ON social_graph

Graph Augmentation

• With CONSTRUCT social_graph, … the query returns the
graph with that identifier united with what is newly
constructed for the given pattern
• No base data manipulation

19

CONSTRUCT social_graph,
(n)-[y:worksAt]->
(x GROUP e :Company {name:=e})

MATCH (n:Person {employer=e}) ON social_graph

Reachability over Paths
• Paths are demarcated with slashes -/ /-
• Regular path expression are demarcated with < >

• If we return just the node (m), the <:knows*> path
expression semantics is a reachability test

20

CONSTRUCT (m)
MATCH (n:Person)-/<:knows+>/->(m:Person)
WHERE n.firstName = 'John' AND n.lastName = 'Doe'
AND (n)-[:isLocatedIn]->()<-[:isLocatedIn]-(m)

Existential Subqueries

21

CONSTRUCT (m)
MATCH (n:Person)-/<:knows+>/->(m:Person)
WHERE n.firstName = 'John' AND n.lastName = 'Doe'
AND (n)-[:isLocatedIn]->()<-[:isLocatedIn]-(m)

WHERE …
EXISTS (
CONSTRUCT ()
MATCH (n)-[:isLocatedIn]->()<-[:isLocatedIn]-(m)

)

Syntactical shorthand for existential subquery:

Views and Optionals

• The view adds a nr_messages property to each :knows edge using SET
• nr_messages property contains the amount of messages that the two

persons n and m have actually exchanged
• OPTIONAL matches, such that people who know each other but never

exchanged a message still get a property e.nr_messages=0

22

GRAPH VIEW social_graph1 AS (
CONSTRUCT social_graph, (n)-[e]->(m)

SET e.nr_messages := COUNT(*)
MATCH (n)-[e:knows]->(m)
WHERE (n:Person) AND (m:Person)
OPTIONAL (n)<-[c1]-(msg1:Post),

(msg1)-[:reply_of]-(msg2),
(msg2:Post)-[c2]->(m)

WHERE (c1:has_creator) AND (c2:has_creator)
)

23

View social_graph1:

Paths as First Class Citizens

24

Storing Paths with @p
• Paths as first-class citizen
• Save the three shortest paths from John Doe towards other person who

lives at his location, reachable over knows edges

• @ prefix indicates a stored path: query is delivering a graph with paths
• Path has label :localPeople and cost as property distance.
• Default cost of a path is its hop-count (length)
• COST allows to bind the cost value of path to a variable

25

CONSTRUCT (n)-/@p:localPeople {distance:=c}/->(m)
MATCH (n)-/3 SHORTEST p <:knows*> COST c/->(m)
WHERE n.firstName = 'John' AND n.lastName = 'Doe'
AND (n)-[:isLocatedIn]->()<-[:isLocatedIn]-(m)

Weighted Shortest Paths
• John Doe wants to go to a Wagner Opera, but none of his friends likes Wagner.
• He thus wants to know which friend to ask to introduce him to a true Wagner lover who lives in

his city (or to someone who can recursively introduce him).
• To optimize his chances for success, he prefers to try “friends” who actually communicate with

each other.

• We look for the weighted shortest path over the wKnows (“weighted knows”) path pattern
towards people who like Wagner

26

GRAPH VIEW social_graph2 AS (
PATH wKnows = (x)-[e:knows]->(y)

WHERE NOT 'Acme' IN y.employer
COST 1 / (1 + e.nr_messages)

CONSTRUCT social_graph1, (n)-/@p:toWagner/->(m)
MATCH (n:Person)-/p <~wKnows*>/->(m:Person) ON social_graph1
WHERE (m)-[:hasInterest]->(:Tag {name='Wagner'})
AND (n)-[:isLocatedIn]->()<-[:isLocatedIn]-(m)
AND n.firstName = 'John' AND n.lastName = 'Doe'

)

27

View social_graph2:

Future Extensions of G-CORE

• Projecting tabular results
• Importing tabular data
• Binding table inputs
• Interpreting tables as graphs

28

Takeaway
• GCORE: A Closed, Composable, and Tractable Graph Query

Language with Paths as First-Class Citizens
• This work is the culmination of 2.5 years of intensive discussion between the

LDBC Graph Query Language Task Force and members of industry and
academia: Capsenta, HP, Huawei, IBM, Neo4j, Oracle, SAP and Sparsity.

• We also thank the following people for their participation: Alex Averbuch, Hassan
Chafi, Irini Fundulaki, Alastair Green, Josep Lluis Larriba Pey, Jan Michels,
Raquel Pau, Arnau Prat, Tomer Sagi and Yinglong Xia

– Tentative: LDBC Technical User Community Meeting in Austin June 8
– http://bit.ly/gcorelanguage
– https://github.com/ldbc/ldbc_gcore_parser

29

