
How to Write Your Own NIC Driver (and why)
Our experience writing 10G/100G drivers

for Snabb in Lua (without NDAs)

Luke Gorrie, Asumu Takikawa

FOSDEM, 3 Feb 2018



Why write device drivers?

- Fear of eternal damnation
- Pursuit of destiny
- Lust for power



Driver Heaven & Hell



In "Driver Heaven":

- Spec is 20 pages
- Driver is 500 lines
- Lots of drivers on Github



In "Driver hell":
- Spec is 1k pages and secret
- Driver is 50KLOC + 500KLOC deps
- Nobody understands but vendors
- Feature creep, binary blobs...



Road to hell:
- Use HW without public docs
- Use drivers you don't understand
- Depend on vendors for everything



Road to heaven:
- Insist on hardware docs
- Read and understand
- Write drivers together
- Engage vendors
- Seek out kindred spirits



Lust for power
- Packetblaster
- Firehose
- Sidespy



Part 2: How



Luke gave you the why

(why driver heaven)



This part is about how

(how Snabb's drivers work)



This part just gives a flavor

of implementation



Big picture: 1,485 LOC of Lua

code is pretty high-level



LuaJIT - easy to understand +

abstractions with low cost



Receiving packets



Snabb driver is an app

(like everything else)





App = obj with some methods

new, push, pull



Let's consider pull (Rx)



Driver maintains ring buffer

NIC DMAs pkts to ring



Driver sets base addr register
Maintains tail reg (RDT)

RDH →

RDT →



Driver sets base addr register
Maintains tail reg (RDT)

RDH →

RDT →



How to access registers
-- self       => driver object
-- self.r     => registers object
-- self.r.RDT => tail register
self.r.RDT()

-- increment (or loop) tail reg after reading pkt
self.r.RDT(band(self.r.RDT() + 1, ring_size - 1))



Ring buffer representation
----------------------------------------------------------------------
|             Address (to memory allocated by driver)                |
----------------------------------------------------------------------
|    VLAN tag    | Errors | Status |    Checksum    |    Length      |
----------------------------------------------------------------------



rxdesc_t = ffi.typeof([[
   struct {
      uint64_t address;
      uint16_t length, cksum;
      uint8_t status, errors;
      uint16_t vlan;
   } __attribute__((packed))
]])

-- allocate driver's ring buffer
local buffer_size = sizeof(rxdesc_t) * ring_size
self.rxdesc = memory.dma_alloc(buffer_size)



function Driver:pull ()
   self:sync_receive() -- sync driver & HW pointers

   for i = 1, engine.pull_npackets do
      -- check ptrs for pkt availability
      if not self:can_receive() then break end

      -- move pkt from rx ring to Snabb
      local pkt = self:receive()
      link.transmit(self.output.tx, pkt)
   end

   -- alloc new buffers for ring
   self:add_receive_buffers()
end



-- method that fetches next packet to read
function Driver:receive()
   -- copy of tail register
   local tail = self.r.RDT()

   -- get length from ring buffer
   -- get actual packet from array of packets
   local len = self.rxdesc[tail]
   local p   = self.rxpackets[tail]
   p.length = len

   -- delete packet from array, increment tail
   self.rxpackets[tail] = nil
   self.r.RDT(band(tail + 1, ring_size - 1))

   return p
end



Recent & future work



RSS + VMDq support

Scales to multiple cores



Hash flows to distribute to

separate queues



Packet

NIC
Rx1 Reg

Rx2 Reg

RAM
Rx 1

Rx 2

hash
DMA



Future: XL710 (40G) support?



Thanks!
https://github.com/snabbco/snabb


