

Igniting the Open Hardware Ecosystem with RISC-V

FOSDEM, February 2018 Palmer Dabbelt, SiFive Yunsup Lee, SiFive

COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED

RISC-V binutils, GCC, Linux, and glibc have all been released by upstream as of February 1, 2018

RISC-V binutils, GCC, Linux, and glibc have all been released by upstream as of February 1, 2018

It is now time to start porting your favorite software project to RISC-V

RISC-V binutils, GCC, Linux, and glibc have all been released by upstream as of February 1, 2018

It is now time to start porting your favorite software project to RISC-V

Join the RISC-V revolution!

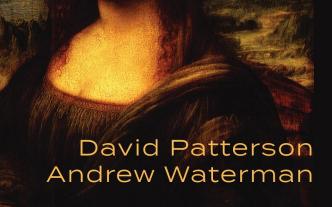
Why Instruction Set Architecture matters

- Why can't Intel sell mobile chips?
 - 99%+ of mobile phones/tablets are based on ARM's v7/v8 ISA
- Why can't ARM partners sell servers?
 - 99%+ of laptops/desktops/servers are based on the AMD64 ISA (over 95%+ built by Intel)
- How can IBM still sell mainframes?
 - IBM 360 is the oldest surviving ISA (50+ years)

ISA is the most important interface in a computer system ISA is where software meets hardware

Open Software/Standards Work!

Field	Standard	Free, Open Impl.	Proprietary Impl.
Networking	Ethernet, TCP/IP	Many	Many
OS	Posix	Linux, FreeBSD	M/S Windows
Compilers	С	gcc, LLVM	Intel icc, ARMcc
Databases	SQL	MySQL, PostgresSQL	Oracle 12C, M/S DB2
Graphics	OpenGL	Mesa3D	M/S DirectX
ISA	?????		x86, ARM, IBM360


- Why not have successful free & open standards and free & open implementations, like other fields?
- Dominant proprietary ISAs are not great designs

What is **RISC-V**?

- A high-quality, license-free, royalty-free RISC ISA specification originally designed at UC Berkeley
- Standard maintained by the non-profit RISC-V Foundation
- Suitable for all types of computing system, from microcontrollers to supercomputers
- Numerous proprietary and open-source cores
- Experiencing rapid uptake in industry and academia
- Supported by a growing shared software ecosystem
- A work in progress...

RISC-V Reader Giveaway!

- Authored by Andrew and Dave
 - Andrew Waterman: SiFive co-founder and co-inventor of the RISC-V ISA
 - Dave Patterson: UC Berkeley professor,
 co-author of "Computer Organization and
 Design", and co-inventor of RISC-V
- "An Open Architecture Atlas"
 - Concise introduction and reference
 - Aimed at embedded systems programmers, students, and the curious
- Tweet us a photo of talk
 - #HiFiveUnveiled and @SiFiveInc
- Winners selected during the talk

An Open Architecture Atlas

READER

тне

Origin of RISC-V

FOSDEM "Igniting the Open Hardware Ecosystem with RISC-V" February 2018

- In 2010, after many years and many projects using MIPS, SPARC, and x86 as the bases of research at Berkeley, it was time to choose an ISA for next set of projects
- Obvious choices: x86 and ARM

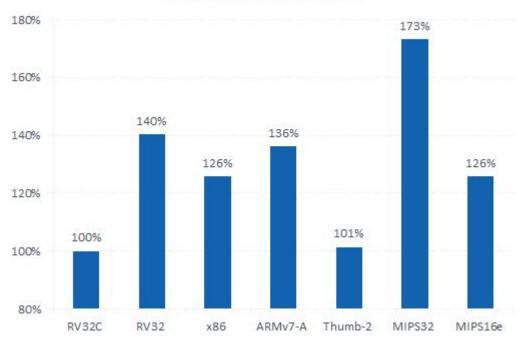
SiFive

Intel x86 "AAA" Instruction

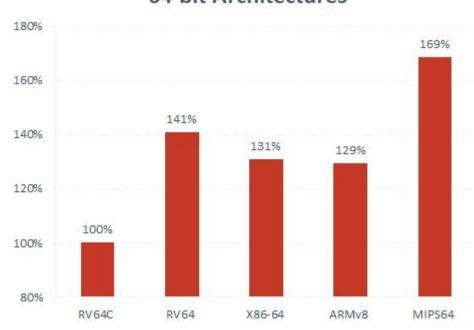
- ASCII Adjust After Addition
- AL register is default source and destination
- If the low nibble is > 9 decimal, or the auxiliary carry flag AF = 1, then
 - Add 6 to low nibble of AL and discard overflow
 - Increment high byte of AL
 - Set CF and AF
- Else
 - CF = AF = 0
- Single byte instruction

ARM v7 LDMIAEQ Instruction

LDMIAEQ SP!, {R4-R7, PC}

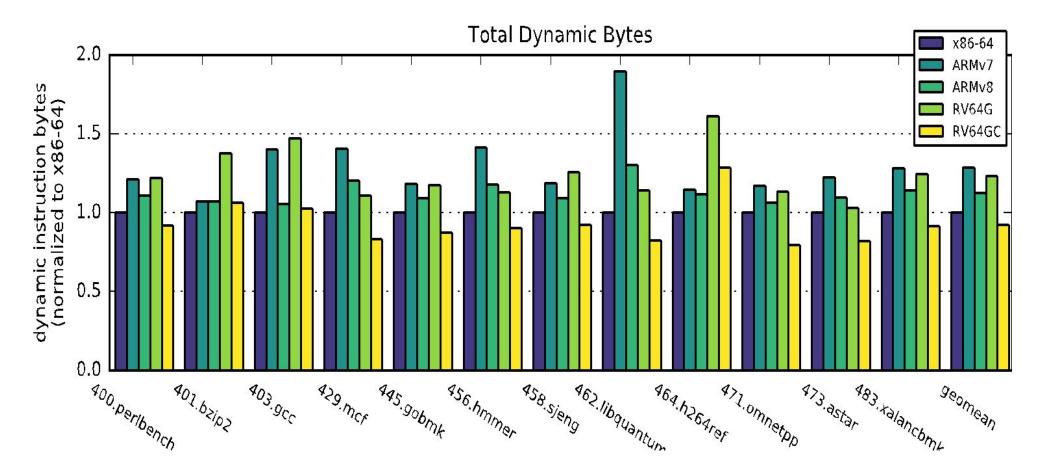

- LoaD Multiple, Increment-Address
- Writes to 7 registers from 6 loads
- Only executes if EQ condition code is set
- Writes to the PC (a conditional branch)
- Can change instruction sets
- Idiom for "stack pop and return from a function call"

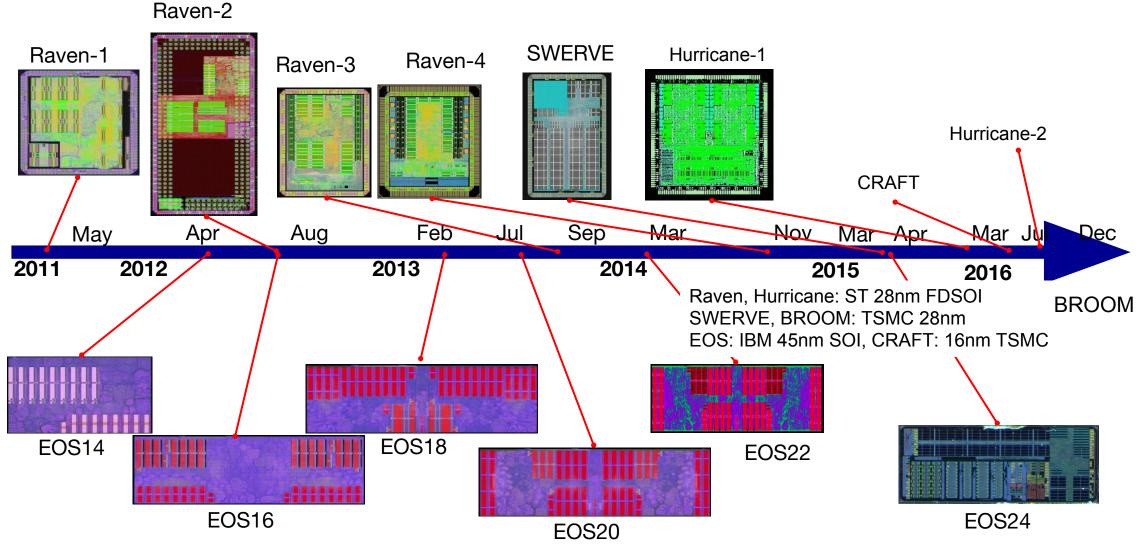
RISC-V Origin Story


- x86 impossible IP issues, too complex
- ARM mostly impossible no 64-bit, IP issues, complex
- So we started "3-month project" in summer 2010 to develop our own clean-slate ISA
 - Principal designers: Andrew Waterman, Yunsup Lee, Dave Patterson, Krste Asanovic
- Four years later, we released the frozen base user spec
 - First public specification released in May 2011
 - Several publications, many tapeouts, lots of software along the way

ISA Effort: Static Code Size

- RISC-V is now the smallest ISA for 32- and 64-bit addresses
- All results are with the same GCC compiler and options

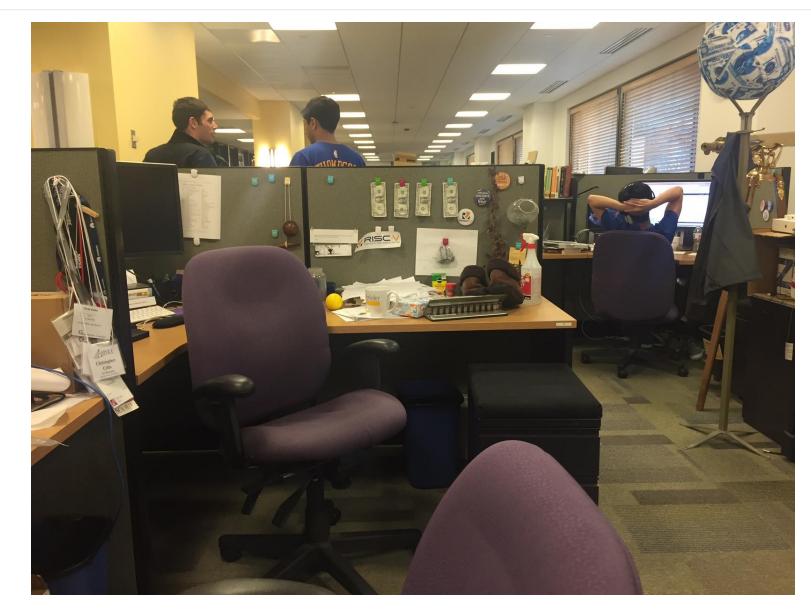



64-bit Architectures

ISA Effort: Dynamic Bytes Fetched

• RV64GC is lowest overall in dynamic bytes fetched

Chip Tapeout Effort: Built 10+ RISC-V Chips


$\overline{\clubsuit}$

Chip Tapeout Effort: DIY

Software Effort: Started from Berkeley

Software Effort: There's a Lot of Software

From: Palmer Dabbelt <palmer.dabbelt@eecs.berkeley.edu>
To: config-patches@gnu.org
Subject: config.sub patch for RISC-V
Date: Wed, 10 Sep 2014 19:20:31 -0700
Message-Id: <1410402032-9184-1-git-send-email-palmer.dabbelt@eecs.berkeley.edu>
X-Mailer: git-send-email 1.8.5.5

This patch provides support for the RISC-V ISA: http://riscv.org/

Not yet upstreamed ports of the binutils, GCC, LLVM, glibc, and Linux exist for RISC-V, and a number of hardware implementations exist -more more information can be seen at http://riscv.org . We'd like to start getting RISC-V recognized by configure so it's easier for people to start porting stuff.

Thanks!

Current State of RISC-V

FOSDEM "Igniting the Open Hardware Ecosystem with RISC-V" February 2018

COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED

RISC-V Foundation

RISC-V Specifications

- User Mode ISA Specification
 - RV32I/RV64I: ALU, branches, and memory
 - M extension for multiplication
 - A extension for atomics
 - F and D extensions for single and double precision floating-point
 - C extension for compressed instructions (16-bit)
- Privileged Mode ISA Specification
 - Supervisor mode
 - Hypervisor mode
 - Machine mode
- External Debug Specification
 - Debug machine-mode software over JTAG

RISC-V Weak Memory Model

Ordering Annotation	Fence-based Equivalent		
$l{b h w d r}.aq$	<pre>fence r,r,[addr]; l{b h w d r}; fence r,rw</pre>		
$l{b h w d r}.aqrl$	<pre>fence rw,rw; l{b h w d r}; fence r,rw</pre>		
$s{b h w d c}.rl$	fence rw,w; s{b h w d c}		
$s{b h w d c}.aqrl$	fence rw,rw; s{b h w d c}		
amo <op>.aq</op>	<pre>amo<op>; fence r,rw</op></pre>		
amo <op>.rl</op>	<pre>fence rw,w; amo<op></op></pre>		
amo <op>.aqrl</op>	<pre>fence rw,rw; amo<op>; fence rw,rw</op></pre>		

Table 1.3: Mappings from .aq and/or .rl to fence-based equivalents

 \models

Upstream!

- binutils is upstream
 - released in 2.28
 - 2.30 is in good shape
- GCC is upstream
 - released in 7.1.0
 - 7.3.0 is in good shape
- Linux is upstream
 - released in 4.15
 - missing device drivers
- glibc is upstream
 - released in 2.27
 - missing RV32I support

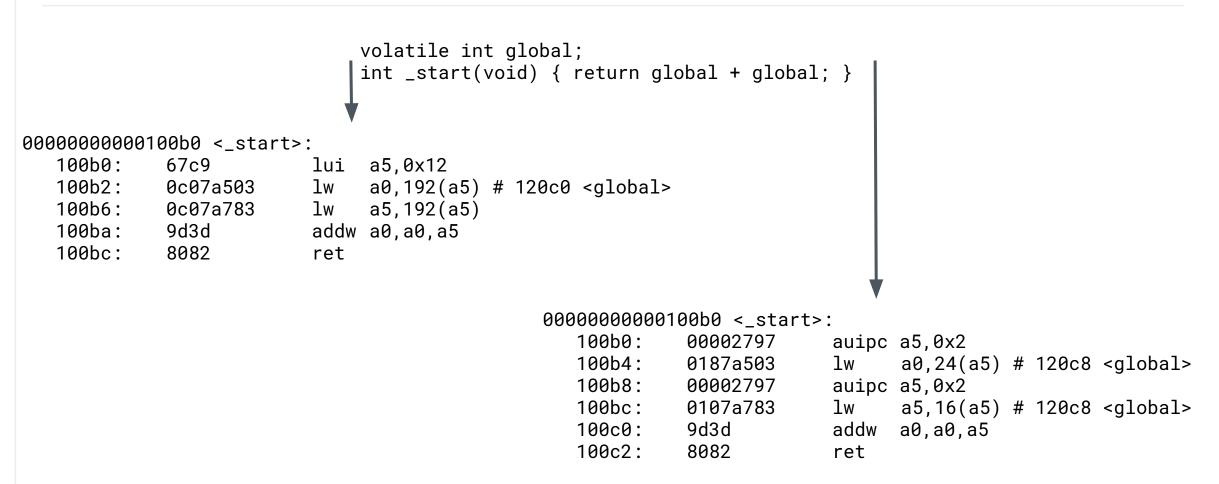
The RISC-V Software Porting Effort

- Kito Cheng (Andes Technology): GCC and newlib
- Jim Wilson (SiFive): binutils and GCC
- Darius Rad (Bluespec): glibc
- Andrew Waterman (SiFive): binutils, GCC, and glibc
- Albert Ou (UC Berkeley): Linux
- Michael Clark (SiFive): QEMU
- DJ Delorie (RedHat): glibc



Future of RISC-V

FOSDEM "Igniting the Open Hardware Ecosystem with RISC-V" February 2018


COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED

Linear-Time Linker Relaxation

SiFive

Handling auipc Efficiently

How to Contribute to RISC-V Software

- RISC-V GitHub Organization
 - <u>https://github.com/riscv</u>
- RISC-V Mailing Lists
 - <u>sw-dev@groups.riscv.org</u>
- Upstream!
 - binutils@lists.sourceware.org
 - <u>gcc-patches@lists.gnu.org</u>
 - <u>linux-riscv@lists.infradead.org</u>
 - <u>libc-alpha@lists.sourceware.org</u>

The Future of RISC-V: Linux Distributions

- Debian
 - Bootstrap in progress
- Fedora
 - Bootstrap in progress
- OpenEmbedded
 - Some toolchain support has landed
- OpenWRT
 - Distro maintainer
- Gentoo
 - We have an ARCH name but no maintainer

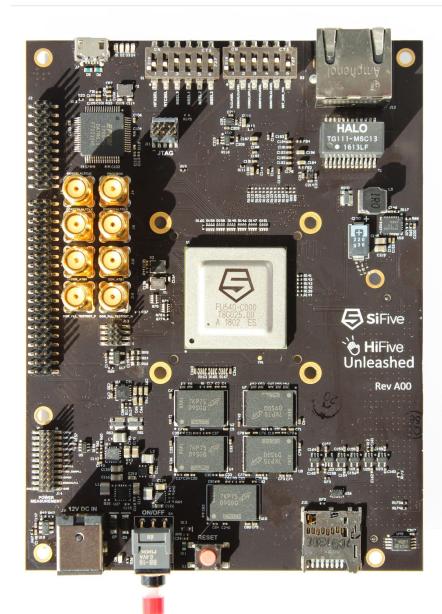
The Future of RISC-V: New Specifications

• V extension for vectors

- Cray-style vectors, updated for the modern world
- Targeted for both temporal and spatial implementations
- Initial presentation at RISC-V workshop in December 2017
- Draft expected by end of the year
- J extension for JITs
 - Primary target is advanced JVMs
 - Working group is being founded
- Unix platform specification
 - Interface between the firmware and kernel
 - Required system profile
 - Working group not yet founded

Future of RISC-V: Linux-Capable Silicon

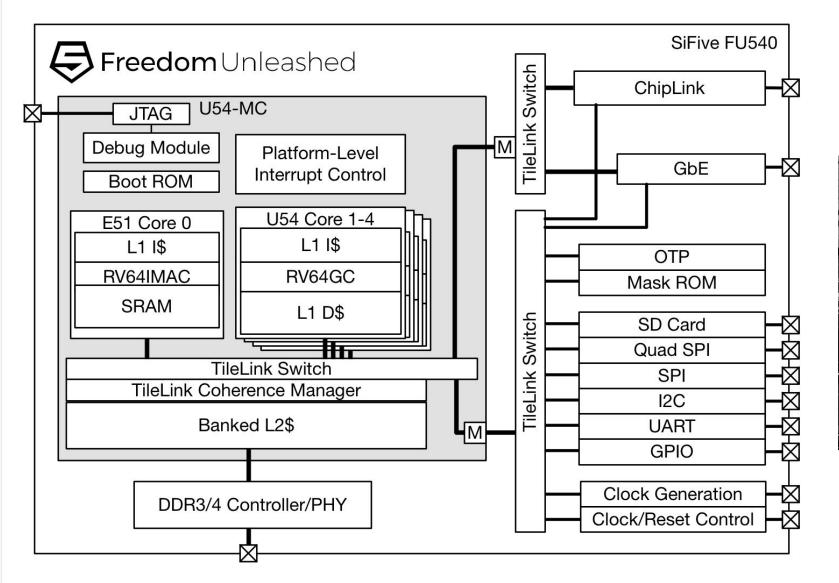
We need Linux-capable silicon to push RISC-V software to the next level


The Future is Here

FOSDEM "Igniting the Open Hardware Ecosystem with RISC-V" February 2018

COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED

$\overline{\clubsuit}$


HiFive Unleashed

- World's First Multi-Core RISC-V Linux Development Board
 - SiFive FU540-C000 (built in 28nm)
 - 4+1 Multi-Core Coherent Configuration, up to 1.5 GHz
 - 4x U54 RV64GC Application Cores with Sv39 Virtual Memory Support
 - 1x E51 RV64IMAC Management Core
 - Coherent 2MB L2 Cache
 - 64-bit DDR4 with ECC
 - 1x Gigabit Ethernet
 - 8 GB 64-bit DDR4 with ECC
 - Gigabit Ethernet Port
 - 32 MB Quad SPI Flash
 - MicroSD card for removable storage
 - FMC connector for future expansion with add-in cards

$\overline{\clubsuit}$

FU540: Penta-Core 64-bit RISC-V Linux SoC

SiFive

Buy it Now!

https://www.sifive.com/products/hifive-unleashed/

RISC-V Core IP Peripheral IP Freedom SoC Chips Tools HiFive1 HiFive Unleashed

HiFive Unleashed

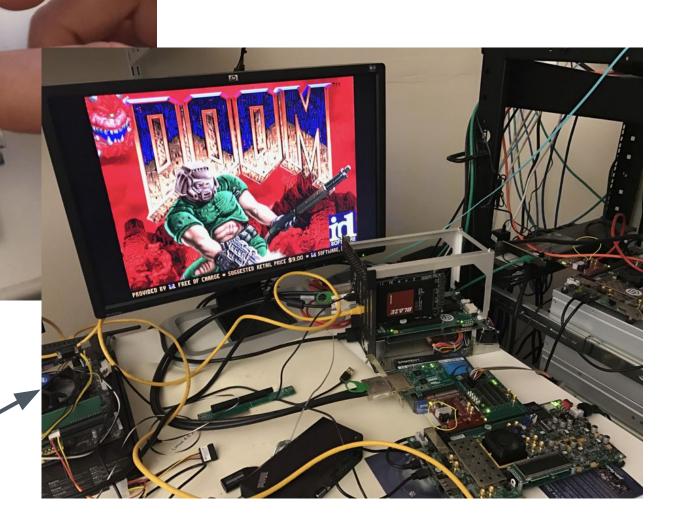
The world's first RISC-V-based Linux development board.

HiFive Unleashed is the ultimate RISC-V developer board. Featuring the world's first and only Linux-capable, multi-core, RISC-V processor, the Freedom U540 and the HiFive Unleashed ushers in a brand new era for RISC-V.

The revolution has started. We can't wait to see what the world unleashes.

37

COPYR


We Open-Sourced the Freedom Platform!

- Freedom Platform is an open-source RISC-V-based SoC platform maintained by SiFive, consisting of:
 - RISC-V Rocket CPU
 - TileLink, a free and open coherent SoC interconnect
 - Low-speed Peripherals: SPI, UART, PWM, GPIO, I2C
 - High-speed Xilinx FPGA Peripheral Wrappers: DDR, PCIe blocks
 - L2\$ (will be open-sourced with the HiFive Unleashed Launch)
- Freedom U540 chip is based on the Freedom Unleashed platform
 - Alas, we can't open-source 3rd-party IP: cells, pads, PLL, OTP, DDR, GbE, ROM
 - We'd love to work together to build a completely open chip!
- Check out
 - <u>https://github.com/sifive/freedom</u>
 - <u>https://dev.sifive.com</u>

Freedom FPGA Dev Kits

Freedom E300 Arty FPGA Dev Kit

Freedom U500 VC707 FPGA Dev Kit

39

E

Why Open-Source the Freedom Platform?

- Open-source has revolutionized SW: Now it's hardware's turn
- Open-source platform allows for more innovation, promotes reuse, and attracts developers
 - Developers and IP providers can focus on their value-added innovation
 - Leverage the collective effort of the community and industry
- Enables both open-source developers and for-profit IP companies to work with Freedom Platform
- Makes it easier for system designers to work with SiFive to customize their chip and software

Join the RISC-V Revolution!

- RISC-V software ecosystem has been growing rapidly thanks to your help
- RISC-V hardware is here
- Start your favorite software project with RISC-V!
- Buy your own HiFive Unleashed dev board at
 <u>https://www.sifive.com/products/hifive-unleashed/</u>
- Sign up at https://dev.sifive.com for updates
- Demo
- Q&A, RISC-V BoF 6-7pm @ Room J1.106

FOSDEM "Igniting the Open Hardware Ecosystem with RISC-V" February 2018

COPYRIGHT 2018 SIFIVE. ALL RIGHTS RESERVED