Compiler-assisted
security enhancement

Paolo Savini

Compiler Engineer Intern, Embecosm

Summary

* Information leakage
- LADA & SECURE

* Bit-slicing

* The 'bit-slicer’

A few considerations

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Information leakage

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Small electronic encrypting devices

Information leakage

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Intrinsic features

* Power consumption

Information leakage

* Timing behaviour
* Electromagnetic leaks

* Sound emission

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

intrinsic features o sensitive data

Information leakage l

SIDE CHANNEL

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Side channel attacks

Information leakage _ _
An attacker may use a side channel in order to

gain sensitive information without the need of a
flaw of the software or a brute force attack

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Side channel
examples:

flow control

The pointer p points to
sensitive data (the padding).
According to the length of the
padding the function returns.
The execution flow depends
on the length of the padding
then

Security issue: CVE-2013-0169

p = buf;

switch(ctx->padding)

{

case RSA_PKCS_V15 :

if(p++ '= 0)

bt

return(POLARSSL ERR RSA INVALID PADDING) ;

= *p++;

if((bt !'= RSA CRYPT && mode == RSA PRIVATE)

(bt '= RSA SIGN && mode == RSA PUBLIC))

return(POLARSSL ERR RSA INVALID PADDING) ;

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Side channel
examples:

cache access

The variable y contains
sensitive data from buf and is

then used to access the array R.

An attacker might gain some
information about the content
of y by monitoring the cache
events.

Security issue: CVE-2016-7440

y=(int) (buf >> (DIGIT BIT-1))&l;
buf<<=(fp digit)1;

/*do ops*/
fp mul (&R[O0], &R[1l], &R[y"1l]);
fp montgomery reduce(&R[y”*1l], P, mp);

fp sqr (&R[y], &R[yl):
fp montgomery reduce (&R[y], P, mp);

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

LADA & SECURE

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Elic University of
B BRISTOL

The LADA project

Leakage Aware Design Automation

LADA & SECURE

Development of tools that help the programmer
design secure code and test it against leakage-related
attacks

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

% University of
Y BRISTOL

The LADA project

Leakage Aware Design Automation

LADA & SECURE

Development of tools that help the programmer
design secure code and test it against leakage-related
attacks

Partnership with Embecosm = SECURE project

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

@Ecosm‘@

The SECURE project

Security Enhancing Compilation for use in Real Environments

LADA & SECURE

Development and integration to the mainstream of
LLVM and GCC of compiler tools that help the
programmer write secure code

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

The SECURE project: aims

LADA & SECURE * Automatic selective bit-slicing

- Stack erasing

* Security warnings

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Historically

Bit-slicing

Used in order to increase the word length of the
processor before the advent of the
Mmicroprocessor.

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

_ - Construction of a processor from modules of
BIt-S|ICIng: smaller bit width, such as an n-bit processor with
Historically n 1-bit processors

Software needed to be properly designed

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

In software

Software simulation of a parallel machine on a
general purpose CPU

Bit-slicing

data slicing + instructions slicing

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing:
data slicing

Let's suppose that we need to
bit-slice the array on the left, a
new virtual register (that may
be an element in a new array) is
allocated to each of the bits of
the original array

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

BY SA

B:-Bs .. Bo | B/Bs

. Bo| BiBs ..

Bo| BsBs ... Bo

—

mwim|oO

Boo OOOOOOOI
Boi || 00000000
Be || 00000000
Bos || 00000004
Ba: || 00000001
Bos || 00000000
Bos || 00000000
Bor || 00000001
Bos || 00000001
Boo || 00000000

BIt'SlICIng: for (i=0; i<n; i++) {
: : array3[i] = arrayl[i] #~ array2[i];
Instruction

slicing l

The algorithm used on bit- for (i=0; i<n; i++){
sliced data needs to be 'bit- for (j=0; 3j<8; j++){
sliced’ as well: it must be

turned into an equivalent
algorithm made of atomic

boolean operations, each }
addressing the proper slice of

data.

array3 slices[i] = arrayl slices[i] ” array2 slices[i];

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

BY SA

What for?
Bit-slicing

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

What for?
Bit-slicing

Only some algorithms can be bit-sliced

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

What for?
Bit-slicing

Only some algorithms can be bit-sliced
And only some of these benefit from that (e.g. SIMD)

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing:
What for?

B:Bs .. Bo|BsBs

. Bo| BBs ...

Given a SIMD system

Bo| BsBs ... Bo

10011001

01001001

00100010

00100100

00101011

—

00010110

10100010

00000004

10011000

11110000

11000100

00010010

00000110

01001001

00001001

00000000

10010010

00100100

00010010

00001001

10010011

»w i m|O

10010010

11111111

00011101

10000010

10001110

01001010

11111110

00111101

Boo || 10100011
Bor || 01111018
Be || 10001000
Bos || 10000114
Bu: || 10110101
Bos || 10000010
Bos || 00000008
Bor || 01110101
Bos || 02100101
Bos || 10001000

l@ ®O \ Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

In cryptography:

Bit-slicing: » Block ciphers are SIMD systems

What for?

* Input-independent execution time is key

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

In cryptography:

Bit-slicing: » Block ciphers are SIMD systems

What for?

* Input-independent execution time is key:

- the execution time of boolean operations does not
depend on the input

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

The 'bit-slicer’

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

An LLVM pass that provides the programmer with:

The ‘bit-slicer’ . ,Cﬁ\gc’lcce)mated bit-slicing of selected areas of the source

- Simple data bit-slicing

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Automated bit-slicing

#pragma bitslice(arrayl, array2, array3)

{

The 'bit-slicer”:

Automated

: o for (i=0; i<kn; i++) {
bit-slicing

array3[i] = arrayl[i] % array2[i];

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

#pragma bitslice (arrayl, array2, array3)
{
for (i=0; i<n; i++){

array3[i] = arrayl[i] % array2[i];

The 'bit-slicer”:

Automated

bit-slicing o
for (i=0; i<n; i++){

for (j=0; j<8; Jj++){

array3 slices[i] = arrayl slices[i] * array2 slices[i];

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Simple data bit-slicing
The bit-slicer spares you from touching bit-sliced data
The 'bit-slicer’

but what if we need to?

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

#define N 10

The 'bit-slicer”: uint8_t array[N];
Simple data slice t array slices[BLOCK LEN * 8];
bit-slicing

__builtin get bitsliced data(array, array slices);

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

A few considerations

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing is very niche technique

Never forget the cons:

A few considerations

* Increase of allocated space
* Increase of code size (to create and manage the slices)
* Only some algorithms can be efficiently bit-sliced

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

SIMD programs are the best candidates:

increased throughput

A few considerations

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

SIMD programs are the best candidates:

increased throughput

A few considerations Block ciphers:

increased throughput

input independent execution time

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

SIMD programs are the best candidates:

increased throughput

A few considerations Block ciphers:
increased throughput
input independent execution time

—> resistence against timing side channel attacks

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

A few considerations B U T I

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Any operation that involves a dependency

. . among the bits of an operand (like the carry in
A few considerations " . .
an addition) might cause a loss of efficiency or
may not even be bit-sliced at all

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Even among block ciphers

A few considerations

it might well be that only some implementations
of the same block cipher benefit from bit-slicing

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Questions?

* Information leakage
- LADA & SECURE

* Bit-slicing

* The 'bit-slicer’

A few considerations

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Examples of bit-sliced implementations

Faster and Timing-Attack Resistant AES-GCM
https://link.springer.com/chapter/10.1007/978-3-642-04138-9 1

Lightweight Fault Attack Resistance in Software Using Intra-
Instruction Redundancy

https://eprint.iacr.org/2016/850

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Contact

Email: paolo.savini@embecosm.com

Linkedin: www.linkedin.com/in/paolo-savini-56b833147

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

