
Compiler-assisted
security enhancement
Paolo Savini

Compiler Engineer Intern, Embecosm

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Summary

• Information leakage

• LADA & SECURE

• Bit-slicing

• The ‘bit-slicer’

• A few considerations

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Information leakage

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Information leakage

Small electronic encrypting devices

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Information leakage

Intrinsic features

 Power consumption

 Timing behaviour

 Electromagnetic leaks

 Sound emission

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Information leakage

intrinsic features ∝ sensitive data

SIDE CHANNEL

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Information leakage

Side channel attacks

An attacker may use a side channel in order to
gain sensitive information without the need of a
flaw of the software or a brute force attack

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Side channel
examples:

flow control

p = buf;

switch(ctx->padding)

{

case RSA_PKCS_V15:

if(p++ != 0)

return(POLARSSL_ERR_RSA_INVALID_PADDING);

bt = *p++;

if((bt != RSA_CRYPT && mode == RSA_PRIVATE)

|| (bt != RSA_SIGN && mode == RSA_PUBLIC))

{

return(POLARSSL_ERR_RSA_INVALID_PADDING);

}

}

The pointer p points to
sensitive data (the padding).
According to the length of the
padding the function returns.
The execution flow depends
on the length of the padding
then

Security issue: CVE-2013-0169

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Side channel
examples:

cache access

y=(int)(buf >> (DIGIT_BIT-1))&1;

buf<<=(fp_digit)1;

/*do ops*/

fp_mul(&R[0], &R[1], &R[y^1]);

fp_montgomery_reduce(&R[y^1], P, mp);

fp_sqr(&R[y], &R[y]);

fp_montgomery_reduce(&R[y], P, mp);

The variable y contains
sensitive data from buf and is
then used to access the array R.
An attacker might gain some
information about the content
of y by monitoring the cache
events.

Security issue: CVE-2016-7440

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

LADA & SECURE

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

LADA & SECURE

The LADA project

Development of tools that help the programmer
design secure code and test it against leakage-related
attacks

Leakage Aware Design Automation

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

LADA & SECURE

The LADA project

Development of tools that help the programmer
design secure code and test it against leakage-related
attacks

Leakage Aware Design Automation

Partnership with Embecosm SECURE project

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

LADA & SECURE

The SECURE project

Development and integration to the mainstream of
LLVM and GCC of compiler tools that help the
programmer write secure code

Security Enhancing Compilation for use in Real Environments

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

LADA & SECURE

The SECURE project: aims

Automatic selective bit-slicing

Stack erasing

Security warnings

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing

Historically

Used in order to increase the word length of the
processor before the advent of the
microprocessor.

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing:
Historically

Construction of a processor from modules of
smaller bit width, such as an n-bit processor with
n 1-bit processors

Software needed to be properly designed

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing

In software

Software simulation of a parallel machine on a
general purpose CPU

data slicing + instructions slicing

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing:
data slicing

Let’s suppose that we need to
bit-slice the array on the left, a
new virtual register (that may
be an element in a new array) is
allocated to each of the bits of
the original array

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing:
instruction
slicing

The algorithm used on bit-
sliced data needs to be ‘bit-
sliced’ as well: it must be
turned into an equivalent
algorithm made of atomic
boolean operations, each
addressing the proper slice of
data.

for (i=0; i<n; i++){

array3[i] = array1[i] ^ array2[i];

}

for (i=0; i<n; i++){

for (j=0; j<8; j++){

array3_slices[i] = array1_slices[i] ^ array2_slices[i];

}

}

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing
What for?

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing
What for?

Only some algorithms can be bit-sliced

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing
What for?

Only some algorithms can be bit-sliced

And only some of these benefit from that (e.g. SIMD)

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing:

What for?

Given a SIMD system

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing:

What for?

In cryptography:

 Block ciphers are SIMD systems

 Input-independent execution time is key

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing:

What for?

In cryptography:

 Block ciphers are SIMD systems

 Input-independent execution time is key:

 the execution time of boolean operations does not
depend on the input

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

The ‘bit-slicer’

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

The ‘bit-slicer’

An LLVM pass that provides the programmer with:

 Automated bit-slicing of selected areas of the source
code

 Simple data bit-slicing

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

The ‘bit-slicer’:
Automated
bit-slicing

Automated bit-slicing

#pragma bitslice(array1, array2, array3)

{

for (i=0; i<n; i++){

array3[i] = array1[i] ^ array2[i];

}

}

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

The ‘bit-slicer’:
Automated
bit-slicing

#pragma bitslice(array1, array2, array3)

{

for (i=0; i<n; i++){

array3[i] = array1[i] ^ array2[i];

}

}

for (i=0; i<n; i++){

for (j=0; j<8; j++){

array3_slices[i] = array1_slices[i] ^ array2_slices[i];

}

}

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

The ‘bit-slicer’

Simple data bit-slicing
The bit-slicer spares you from touching bit-sliced data

but what if we need to?

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

The ‘bit-slicer’:
Simple data
bit-slicing

#define N 10

uint8_t array[N];

slice_t array_slices[BLOCK_LEN * 8];

__builtin_get_bitsliced_data(array, array_slices);

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

A few considerations

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

A few considerations

Bit-slicing is very niche technique

Never forget the cons:

 Increase of allocated space

 Increase of code size (to create and manage the slices)

 Only some algorithms can be efficiently bit-sliced

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

A few considerations

SIMD programs are the best candidates:

increased throughput

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

A few considerations

SIMD programs are the best candidates:

increased throughput

Block ciphers:

increased throughput

input independent execution time

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

A few considerations

SIMD programs are the best candidates:

increased throughput

Block ciphers:

increased throughput

input independent execution time

 resistence against timing side channel attacks

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

A few considerations BUT!

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

A few considerations

Any operation that involves a dependency
among the bits of an operand (like the carry in
an addition) might cause a loss of efficiency or
may not even be bit-sliced at all

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

A few considerations

Even among block ciphers

it might well be that only some implementations
of the same block cipher benefit from bit-slicing

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Questions?

• Information leakage

• LADA & SECURE

• Bit-slicing

• The ‘bit-slicer’

• A few considerations

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Examples of bit-sliced implementations

Faster and Timing-Attack Resistant AES-GCM

https://link.springer.com/chapter/10.1007/978-3-642-04138-9_1

Lightweight Fault Attack Resistance in Software Using Intra-
Instruction Redundancy

https://eprint.iacr.org/2016/850

Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Contact

Email: paolo.savini@embecosm.com

Linkedin: www.linkedin.com/in/paolo-savini-56b833147

