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Information leakage
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Information leakage

Small electronic encrypting devices



Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Information leakage

Intrinsic features

 Power consumption

 Timing behaviour

 Electromagnetic leaks

 Sound emission
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Information leakage

intrinsic features     ∝ sensitive data

SIDE CHANNEL
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Information leakage

Side channel attacks

An attacker may use a side channel in order to 
gain sensitive information without the need of a 
flaw of the software or a brute force attack
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Side channel
examples:

flow control

p = buf;

switch( ctx->padding )

{

case RSA_PKCS_V15:

if( p++ != 0 )

return( POLARSSL_ERR_RSA_INVALID_PADDING);

bt = *p++;

if( ( bt != RSA_CRYPT && mode == RSA_PRIVATE )

|| ( bt != RSA_SIGN && mode == RSA_PUBLIC ) )

{

return( POLARSSL_ERR_RSA_INVALID_PADDING);

}

} 

The pointer p points to 
sensitive data (the padding). 
According to the length of the 
padding the function returns. 
The execution flow depends
on the length of the padding
then

Security issue:   CVE-2013-0169
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Side channel
examples:

cache access

y=(int)(buf >> (DIGIT_BIT-1))&1;

buf<<=(fp_digit)1;

/*do ops*/

fp_mul(&R[0], &R[1], &R[y^1]);

fp_montgomery_reduce(&R[y^1], P, mp);

fp_sqr(&R[y], &R[y]);          

fp_montgomery_reduce(&R[y], P, mp);

The variable y contains
sensitive data from buf and is
then used to access the array R. 
An attacker might gain some 
information about the content
of y by monitoring the cache 
events.

Security issue:   CVE-2016-7440
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LADA & SECURE
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LADA & SECURE

The LADA project

Development of tools that help the programmer 
design secure code and test it against leakage-related 
attacks

Leakage Aware Design Automation
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LADA & SECURE

The LADA project

Development of tools that help the programmer
design secure code and test it against leakage-related
attacks

Leakage Aware Design Automation

Partnership with Embecosm SECURE project
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LADA & SECURE

The SECURE project

Development and integration to the mainstream of 
LLVM and GCC of compiler tools that help the 
programmer write secure code

Security Enhancing Compilation for use in Real Environments
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LADA & SECURE

The SECURE project: aims

Automatic selective bit-slicing

Stack erasing

Security warnings
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Bit-slicing
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Bit-slicing

Historically

Used in order to increase the word length of the 
processor before the advent of the 
microprocessor.



Copyright © 2018 Embecosm. Freely available under a Creative Commons licence

Bit-slicing:
Historically

Construction of a processor from modules of 
smaller bit width, such as an n-bit processor with 
n 1-bit processors

Software needed to be properly designed
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Bit-slicing

In software

Software simulation of a parallel machine on a 
general purpose CPU

data slicing +  instructions slicing
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Bit-slicing:
data slicing

Let’s suppose that we need to 
bit-slice the array on the left, a 
new virtual register (that may
be an element in a new array) is
allocated to each of the bits of 
the original array
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Bit-slicing:
instruction
slicing

The algorithm used on bit-
sliced data needs to be ‘bit-
sliced’ as well: it must be 
turned into an equivalent
algorithm made of atomic
boolean operations, each
addressing the proper slice of 
data.

for ( i=0; i<n; i++ ){

array3[i] = array1[i] ^ array2[i]; 

}

for ( i=0; i<n; i++ ){

for ( j=0; j<8; j++ ){

array3_slices[i] = array1_slices[i] ^ array2_slices[i]; 

}

}
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Bit-slicing
What for?
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Bit-slicing
What for?

Only some algorithms can be bit-sliced
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Bit-slicing
What for?

Only some algorithms can be bit-sliced

And only some of these benefit from that (e.g. SIMD)
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Bit-slicing:

What for?

Given a SIMD system
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Bit-slicing:

What for?

In cryptography:

 Block ciphers are SIMD systems

 Input-independent execution time is key
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Bit-slicing:

What for?

In cryptography:

 Block ciphers are SIMD systems

 Input-independent execution time is key:

 the execution time of boolean operations does not
depend on the input
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The ‘bit-slicer’
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The ‘bit-slicer’

An LLVM pass that provides the programmer with:

 Automated bit-slicing of selected areas of the source 
code

 Simple data bit-slicing
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The ‘bit-slicer’:
Automated
bit-slicing

Automated bit-slicing

#pragma bitslice(array1, array2, array3)

{

for ( i=0; i<n; i++ ){

array3[i] = array1[i] ^ array2[i]; 

}

}
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The ‘bit-slicer’:
Automated
bit-slicing

#pragma bitslice(array1, array2, array3)

{

for ( i=0; i<n; i++ ){

array3[i] = array1[i] ^ array2[i];

}

}

for ( i=0; i<n; i++ ){

for ( j=0; j<8; j++ ){

array3_slices[i] = array1_slices[i] ^ array2_slices[i]; 

}

}
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The ‘bit-slicer’

Simple data bit-slicing
The bit-slicer spares you from touching bit-sliced data

but what if we need to?
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The ‘bit-slicer’:
Simple data 
bit-slicing

#define N 10

uint8_t array[N]; 

slice_t array_slices[BLOCK_LEN * 8];

__builtin_get_bitsliced_data(array, array_slices);
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A few considerations
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A few considerations

Bit-slicing is very niche technique

Never forget the cons:

 Increase of allocated space

 Increase of code size (to create and manage the slices)

 Only some algorithms can be efficiently bit-sliced
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A few considerations

SIMD programs are the best candidates:

increased throughput
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A few considerations

SIMD programs are the best candidates:

increased throughput

Block ciphers:

increased throughput

input independent execution time
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A few considerations

SIMD programs are the best candidates:

increased throughput

Block ciphers:

increased throughput

input independent execution time

 resistence against timing side channel attacks
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A few considerations BUT!
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A few considerations

Any operation that involves a dependency
among the bits of an operand (like the carry in 
an addition) might cause a loss of efficiency or 
may not even be bit-sliced at all
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A few considerations

Even among block ciphers

it might well be that only some implementations
of the same block cipher benefit from bit-slicing
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Questions?

• Information leakage

• LADA & SECURE

• Bit-slicing

• The ‘bit-slicer’

• A few considerations
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Examples of bit-sliced implementations

Faster and Timing-Attack Resistant AES-GCM

https://link.springer.com/chapter/10.1007/978-3-642-04138-9_1

Lightweight Fault Attack Resistance in Software Using Intra-
Instruction Redundancy

https://eprint.iacr.org/2016/850
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Contact

Email: paolo.savini@embecosm.com

Linkedin: www.linkedin.com/in/paolo-savini-56b833147


