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Some news/announcement 
first



  

XDC 2018  dates confirmed

● Will be held in A Coruña, Spain

● From September 26th to September 29th

● Follow www.twitter.com/xdc2018 for updates

http://www.twitter.com/xdc2018


  

Conformance

● Intel Mesa driver for Linux is now OpenGL 4.6 

conformant

● Conformant on day one!

● Thats includes ARB_gl_spirv tests
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Introduction



  

Who is doing this?
● Started by Nicolai Hähnle 

● Right now:

●  Alejandro Piñeiro

●  Eduardo Lima

●  Neil Roberts

● Supported by Intel



  

GLSL

● OpenGL Shading Language

● C-Like language used to write shaders.

● The shading source code is included on your 

program, so it is easy to get it back

● First anounced on 2004



  

SPIR-V

● Introduced as SPIR in 2011

● Standard Portable Intermediate Representation

● OpenCL

● Binary format

● Based on LLVM IR

● SPIR-V announced in 2015

● Part of OpenCL 2.1 core and Vulkan core

● Not based on LLVM IR anymore



  

OpenGL vs Vulkan

● Some applications are porting from one to the 

other, or want to support both

● Some interoperatibility are desired

● But one use GLSL, the other SPIR-V as shading 

language



  

GL_KHR_vulkan_glsl

● Modifies GLSL to be used for Vulkan (dec-2015)

● But not as a direct consumer, but after being 

compiled down to SPIR-V

● Not a driver extension, but a frontend extension



  

GL_ARB_gl_spirv

● Defines two things:

● Allows SPIR-V module to be loaded on OpenGL

● Modifies GLSL to be a source for creating SPIR-V 

modules for OpenGL consumption.

● Driver + frontend extension



  

GL_ARB_spirv_extensions

● ARB_gl_spirv is focused on SPIR-V 1.0

● This extension allows to expose which extra 

functionality is supported.

● Spec implies the possibility of OpenGL specific 

SPIR-V extensions.



  

Khronos tools

● Glslang

● Khronos reference front-end for GLSL and ESSL

● Sample SPIR-V generator

● SPIRV-tools

● Set of tools for processing SPIR-V modules

● Assembler, disassembler, validator, and 

optimizer



  

Base GLSL
●  KHR_vulkan_glsl remove and changes several 

old-glsl features, and adds some vulkan-like 

features

● ARB_gl_spirv uses KHR_vulkan_glsl as base

● But it restores some GLSL features, removes 

some vulkan features, add specific ones and 

tweak existing ones.



  

Examples
● Subroutines: removed on both

● Atomic counters:

● Removed on KHR_vulkan_glsl

● Re-added for ARB_gl_spirv



  

Perfect strangers
● ARB_gl_spirv big change is having names as 

optional, in a SPIR-V like fashion

● Example: Frontend could get a GLSL with a ubo, 

and ignore the name when creating the SPIR-V

● That means that everything needs to work 

without any name

● You need to use location, binding, index, etc

● 

● Atomic counters:

● Removed on KHR_vulkan_glsl

● Re-added for ARB_gl_spirv



  

Development history



  

Pre-history
● “Interest in GL_ARB_gl_spirv” (2016-07-27)

● Several driver developers added suggestions on 

how to implement it

● “[RFC] ARB_gl_spirv and NIR backend for 

radeonsi” (Nicolai Hähnle, 2017-05-21)

● Starting point with some code, focused on 

radeonsi

● Also starts the discussion for testing



  

Jumping in
● Igalia jumped in on ~September 2017

● Used Nicolai wip code as reference

● Both mesa and piglit

● Focused first on integrate it with the mesa driver 

and check whats missing to get the (also wip) CTS 

tests passing



  

NIR
● Intermediate Representation of the shader, 

created initially for Intel, used now on other 

backends

● So there is a GLSL→GLSL IR→NIR→Intel IR chain 

on Mesa Intel drivers

● Intel Vulkan driver introduced a SPIR-V to NIR 

pass



  

But
● Right now there is not linking on NIR

● Linking is done on Mesa IR

● NIR receives all the objects already linked



  

What it is a linker?
● “Program that take two or more objects 

generated by the compiler and links them to 

create a executable program”

● Abstracting *a lot*, the GLSL linker does:

● Gather info from all the objects

● Validates that all together makes sense



  

Reusing IR linker
● GLSL IR linker is heavily based on the ir-variables

● Nicolai Hähnle first approach was:

● Use existing vulkan spir to nir

● Convert nir variables to ir variable

● Re-use as much possible IR linker

● Use nir shader after that

● Good approach for bootstrap



  

Coding and technical 
decisions



  

First steps
● Initial focus was getting the CTS tests working for 

the Intel Mesa driver

● That gave us a better understanding of what was 

missing



  

More spirv to nir
● Current spirv_to_nir pass was focused on Vulkan

● Missed support for several features needed by 

OpenGL, supported on SPIR-V:

● Atomic counters

● Transform feedback/geometry streams

● Tessellation

● OpenGL-friendly ubos/ssbos tweaking



  

Starting to rethink linking
● IR-variable→nir variable approach was good to 

get some support quickly supported

● Example: atomic counters

● But seemed somewhat artificial

● *But* the spec tweaked too much GLSL needs, 

specially when linking



  

Poster boy: ubos
● GLSL IR linking code for ubos is based on the 

name.

● Explicit binding is optional.

● Without explicit binding, it is assigned during the 

linking

/* This hash table will track all of the uniform blocks that have been
 * encountered.  Since blocks with the same block-name must be the same,
 * the hash is organized by block-name.
 */



  

Poster boy: ubos (II)
● Under ARB_gl_spirv names are optional

● Needs to work without them

● Explicit binding is mandatory

● Shared and packed layout are not supported

● Only st140 possible (all ubos are active)

● Not too much GLSL IR linker to reuse here



  

Big decision going
● We need to rewrite a good bunch of the linker

● It is really worth to over-complicate an already 

existing linker?

● All the info is already on the nir shader

● Timothy Arceri was adding some linking-related 

nir helpers



  

NIR based linker
● Listing all the reasons:

● What we have right is NIR

● Linking would be already different on several 

aspects

● People were already adding nir-based linking 

utilities

● Scope defined:

● It will be initially centered on ARB_gl_spirv



  

Focusing on passing CTS
● With a clear dev plan, we focus on getting the 

CTS tests passing

● Clearly they covered most of the spec

● They weren’t too many (8)

● Tricky: they were also a WIP at the moment

● We used some of our time testing, reviewing, 

submitting feedback, and even fixes

● The patchset reached v21!



  

We got it!
● We got all the tests passing ~Oct/Nov

● Next step was cleaning, and start to submit 

patches (more on this later)

● Clean enough for the CTS submission.

● So we are done yet? Not really ...



  

Testing



  

More testing needed
● Passing CTS is not enough to be considered 

production ready

● There are several aspects, especially execution 

tests, that needs more coverage

● Two main approaches:

● Improve piglit

● Work on a GLSL→SPIR-V backend



  

piglit
● Piglit is an open-source test suite for OpenGL 

implementation

● Heavily used by piglit developers

● shader_runner: run .shader_text txt file format:

● shader source

● Values for the uniforms, ubos, ssbos, etc

● Check if linking or rendering was correct.



  

piglit – gl_spirv support (I)
● Nicolai added support for ARB_gl_spirv

● New script that parses .shader_test and call 

glslang to create the SPIR-V binaries

● It includes ad-hoc attempts to “fix” the shader

● Support on shader_runner to load a SPIR-V binary 

or include a SPIR-V text format and use spirv-tools



  

piglit – gl_spirv support (II)
● You can easily switch using GLSL or SPIR-V for the 

same test

● You can write tests easily

● Invaluable tool at this stage

● We loved it!

● Thanks



  

piglit – gl_spirv support(III)
● We added some features:

● Feed ubo support without using names

● To test SPIR-V execution testing without no 

names

● In any case, it is not clear if all this will go 

upstream

● Some doubs on mesa-dev for the approach

● Some see glslang dependency as a no-go



  

GLSL to SPIR-V backend (I)
● Suggested by Jason on “Adding a SPIR-V back-end 

to the GLSL compiler” (Jason Ekstrand, 2017-05-

26). Main Advantages:

● Provide another GLSL to SPIR-V compiler

● Optimizations

● ARB_gl_spirv testing



  

GLSL to SPIR-V backend (II)
● “The first of the real SPIR-V work” (Ian Romanick, 

v1 2017-10-11, v2 2017-11-21)

● First version of the back-end

● Some patches reviewed

● Some features pending (like ubos)



  

GLSL to SPIR-V backend(III)
● For ARB_gl_spirv the idea would do this:

● GLSL→GLSL IR→SPIR-V→NIR

● Conditionally. 

● Internally it would need to do the “fixing”

● Would allow to run piglit tests without changes

● But:

● Not finished

● We would still need to modify how to feed data



  

Current status and future



  

What’s working
● A little of everything is partially covered:

● Uniforms

● Atomic counters

● UBOs and SSBOs

● Tessellation shaders

● Transform feedback/Geometry streams

● We have plenty of programs working

● ARB_spirv_extensions fully complete



  

What’s missing
● Poulish all the previous features

● Arrays of arrays

● Some support for ubos on the linker

● Failing on the spirv to nir pass

● Multisample Image Array

● Validation

● More testing 



  

Upstreaming
● Right now our mesa development branch has 

~80 patches

● Plan is sending them in small batches

● We already sent a first patchset

● “Initial gl_spirv and spirv_extensions support in 

Mesa and i965” (Eduardo Lima, 2017-11-17)

● Partly reviewed. V4 sent in January.



  

Questions?
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