

Alejandro Piñeiro (apinheiro@igalia.com)g

ARB_gl_spirv: bringing
SPIR-V to Mesa OpenGL

Some news/announcement
first

XDC 2018 dates confirmed

● Will be held in A Coruña, Spain

● From September 26th to September 29th

● Follow www.twitter.com/xdc2018 for updates

http://www.twitter.com/xdc2018

Conformance

● Intel Mesa driver for Linux is now OpenGL 4.6

conformant

● Conformant on day one!

● Thats includes ARB_gl_spirv tests

Topics covered

● Introduction

● Development history

● Technical decisions

● Testing

● Current status and future

Introduction

Who is doing this?
● Started by Nicolai Hähnle

● Right now:

● Alejandro Piñeiro

● Eduardo Lima

● Neil Roberts

● Supported by Intel

GLSL

● OpenGL Shading Language

● C-Like language used to write shaders.

● The shading source code is included on your

program, so it is easy to get it back

● First anounced on 2004

SPIR-V

● Introduced as SPIR in 2011

● Standard Portable Intermediate Representation

● OpenCL

● Binary format

● Based on LLVM IR

● SPIR-V announced in 2015

● Part of OpenCL 2.1 core and Vulkan core

● Not based on LLVM IR anymore

OpenGL vs Vulkan

● Some applications are porting from one to the

other, or want to support both

● Some interoperatibility are desired

● But one use GLSL, the other SPIR-V as shading

language

GL_KHR_vulkan_glsl

● Modifies GLSL to be used for Vulkan (dec-2015)

● But not as a direct consumer, but after being

compiled down to SPIR-V

● Not a driver extension, but a frontend extension

GL_ARB_gl_spirv

● Defines two things:

● Allows SPIR-V module to be loaded on OpenGL

● Modifies GLSL to be a source for creating SPIR-V

modules for OpenGL consumption.

● Driver + frontend extension

GL_ARB_spirv_extensions

● ARB_gl_spirv is focused on SPIR-V 1.0

● This extension allows to expose which extra

functionality is supported.

● Spec implies the possibility of OpenGL specific

SPIR-V extensions.

Khronos tools

● Glslang

● Khronos reference front-end for GLSL and ESSL

● Sample SPIR-V generator

● SPIRV-tools

● Set of tools for processing SPIR-V modules

● Assembler, disassembler, validator, and

optimizer

Base GLSL
● KHR_vulkan_glsl remove and changes several

old-glsl features, and adds some vulkan-like

features

● ARB_gl_spirv uses KHR_vulkan_glsl as base

● But it restores some GLSL features, removes

some vulkan features, add specific ones and

tweak existing ones.

Examples
● Subroutines: removed on both

● Atomic counters:

● Removed on KHR_vulkan_glsl

● Re-added for ARB_gl_spirv

Perfect strangers
● ARB_gl_spirv big change is having names as

optional, in a SPIR-V like fashion

● Example: Frontend could get a GLSL with a ubo,

and ignore the name when creating the SPIR-V

● That means that everything needs to work

without any name

● You need to use location, binding, index, etc

●

● Atomic counters:

● Removed on KHR_vulkan_glsl

● Re-added for ARB_gl_spirv

Development history

Pre-history
● “Interest in GL_ARB_gl_spirv” (2016-07-27)

● Several driver developers added suggestions on

how to implement it

● “[RFC] ARB_gl_spirv and NIR backend for

radeonsi” (Nicolai Hähnle, 2017-05-21)

● Starting point with some code, focused on

radeonsi

● Also starts the discussion for testing

Jumping in
● Igalia jumped in on ~September 2017

● Used Nicolai wip code as reference

● Both mesa and piglit

● Focused first on integrate it with the mesa driver

and check whats missing to get the (also wip) CTS

tests passing

NIR
● Intermediate Representation of the shader,

created initially for Intel, used now on other

backends

● So there is a GLSL→GLSL IR→NIR→Intel IR chain

on Mesa Intel drivers

● Intel Vulkan driver introduced a SPIR-V to NIR

pass

But
● Right now there is not linking on NIR

● Linking is done on Mesa IR

● NIR receives all the objects already linked

What it is a linker?
● “Program that take two or more objects

generated by the compiler and links them to

create a executable program”

● Abstracting *a lot*, the GLSL linker does:

● Gather info from all the objects

● Validates that all together makes sense

Reusing IR linker
● GLSL IR linker is heavily based on the ir-variables

● Nicolai Hähnle first approach was:

● Use existing vulkan spir to nir

● Convert nir variables to ir variable

● Re-use as much possible IR linker

● Use nir shader after that

● Good approach for bootstrap

Coding and technical
decisions

First steps
● Initial focus was getting the CTS tests working for

the Intel Mesa driver

● That gave us a better understanding of what was

missing

More spirv to nir
● Current spirv_to_nir pass was focused on Vulkan

● Missed support for several features needed by

OpenGL, supported on SPIR-V:

● Atomic counters

● Transform feedback/geometry streams

● Tessellation

● OpenGL-friendly ubos/ssbos tweaking

Starting to rethink linking
● IR-variable→nir variable approach was good to

get some support quickly supported

● Example: atomic counters

● But seemed somewhat artificial

● *But* the spec tweaked too much GLSL needs,

specially when linking

Poster boy: ubos
● GLSL IR linking code for ubos is based on the

name.

● Explicit binding is optional.

● Without explicit binding, it is assigned during the

linking

/* This hash table will track all of the uniform blocks that have been
 * encountered. Since blocks with the same block-name must be the same,
 * the hash is organized by block-name.
 */

Poster boy: ubos (II)
● Under ARB_gl_spirv names are optional

● Needs to work without them

● Explicit binding is mandatory

● Shared and packed layout are not supported

● Only st140 possible (all ubos are active)

● Not too much GLSL IR linker to reuse here

Big decision going
● We need to rewrite a good bunch of the linker

● It is really worth to over-complicate an already

existing linker?

● All the info is already on the nir shader

● Timothy Arceri was adding some linking-related

nir helpers

NIR based linker
● Listing all the reasons:

● What we have right is NIR

● Linking would be already different on several

aspects

● People were already adding nir-based linking

utilities

● Scope defined:

● It will be initially centered on ARB_gl_spirv

Focusing on passing CTS
● With a clear dev plan, we focus on getting the

CTS tests passing

● Clearly they covered most of the spec

● They weren’t too many (8)

● Tricky: they were also a WIP at the moment

● We used some of our time testing, reviewing,

submitting feedback, and even fixes

● The patchset reached v21!

We got it!
● We got all the tests passing ~Oct/Nov

● Next step was cleaning, and start to submit

patches (more on this later)

● Clean enough for the CTS submission.

● So we are done yet? Not really ...

Testing

More testing needed
● Passing CTS is not enough to be considered

production ready

● There are several aspects, especially execution

tests, that needs more coverage

● Two main approaches:

● Improve piglit

● Work on a GLSL→SPIR-V backend

piglit
● Piglit is an open-source test suite for OpenGL

implementation

● Heavily used by piglit developers

● shader_runner: run .shader_text txt file format:

● shader source

● Values for the uniforms, ubos, ssbos, etc

● Check if linking or rendering was correct.

piglit – gl_spirv support (I)
● Nicolai added support for ARB_gl_spirv

● New script that parses .shader_test and call

glslang to create the SPIR-V binaries

● It includes ad-hoc attempts to “fix” the shader

● Support on shader_runner to load a SPIR-V binary

or include a SPIR-V text format and use spirv-tools

piglit – gl_spirv support (II)
● You can easily switch using GLSL or SPIR-V for the

same test

● You can write tests easily

● Invaluable tool at this stage

● We loved it!

● Thanks

piglit – gl_spirv support(III)
● We added some features:

● Feed ubo support without using names

● To test SPIR-V execution testing without no

names

● In any case, it is not clear if all this will go

upstream

● Some doubs on mesa-dev for the approach

● Some see glslang dependency as a no-go

GLSL to SPIR-V backend (I)
● Suggested by Jason on “Adding a SPIR-V back-end

to the GLSL compiler” (Jason Ekstrand, 2017-05-

26). Main Advantages:

● Provide another GLSL to SPIR-V compiler

● Optimizations

● ARB_gl_spirv testing

GLSL to SPIR-V backend (II)
● “The first of the real SPIR-V work” (Ian Romanick,

v1 2017-10-11, v2 2017-11-21)

● First version of the back-end

● Some patches reviewed

● Some features pending (like ubos)

GLSL to SPIR-V backend(III)
● For ARB_gl_spirv the idea would do this:

● GLSL→GLSL IR→SPIR-V→NIR

● Conditionally.

● Internally it would need to do the “fixing”

● Would allow to run piglit tests without changes

● But:

● Not finished

● We would still need to modify how to feed data

Current status and future

What’s working
● A little of everything is partially covered:

● Uniforms

● Atomic counters

● UBOs and SSBOs

● Tessellation shaders

● Transform feedback/Geometry streams

● We have plenty of programs working

● ARB_spirv_extensions fully complete

What’s missing
● Poulish all the previous features

● Arrays of arrays

● Some support for ubos on the linker

● Failing on the spirv to nir pass

● Multisample Image Array

● Validation

● More testing

Upstreaming
● Right now our mesa development branch has

~80 patches

● Plan is sending them in small batches

● We already sent a first patchset

● “Initial gl_spirv and spirv_extensions support in

Mesa and i965” (Eduardo Lima, 2017-11-17)

● Partly reviewed. V4 sent in January.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

