

Condition Monitoring & Transfer Learning Good predictions in situations with (initially) almost no data

DB Systel GmbH | Dr. Daniel Germanus, Felix Bert | FOSDEM | February 2019

DB Systel Digital bewegen. Gemeinsam.

Background

- Condition Monitoring is a precondition to achieve predictive maintenance!
- What kind of Deutsche Bahn equipment could be monitored?
- What kind of sensor seems universal?
- We've founded a DB Systel Venture called Acoustic Infrastructure Monitoring and listen to our equipment!

Challenges galore

- Generalization
- Little data (in the beginning)
- Little expert time
- Immediate expectation of cost savings
- We chose a machine learning approach
 - But: machine learning is also a tricky subject!
 - Today we present transfer learning to leverage a quick start with the customer
- tl;dr: equipment breaks, we detect it early on using microphones and apply transfer learning to do it even better than w/o ;-)

Condition Monitoring Goals:

Decrease maintenance costs Optimize personnel placement Increase availability

[1] "Condition Monitoring and Diagnostics of machines - Vocabulary" in ISO 13372

[2] "Development of Acoustic Emission Technology for Condition Monitoring and Diagnosis of Rotating Machines; Bearings, Pumps, Gearboxes, Engines and Rotating Structures" in The Shock and Vibration Digest, Vol 38(1), 2006, David Mba and Raj B. K. N. Rao

Transfer Learning Goals:

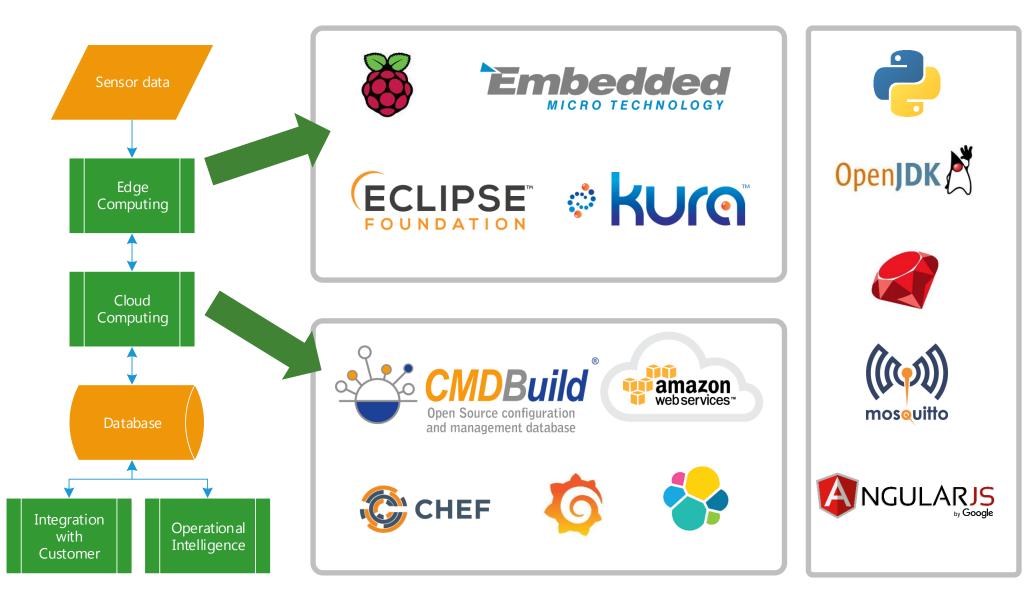
Increase prediction accuracy Quick start with customer

[3] "Transfer Learning will radically change machine learning for engineers" direct quote of Andrew Ng at NIPS 2016[4] "Deep Learning" MIT Press, Ch. 15, 2016, Ian Goodfellow, Yoshua Bengio, and Aaron Courville

5 DB Systel GmbH | Dr. Daniel Germanus, Felix Bert | FOSDEM | February 2019

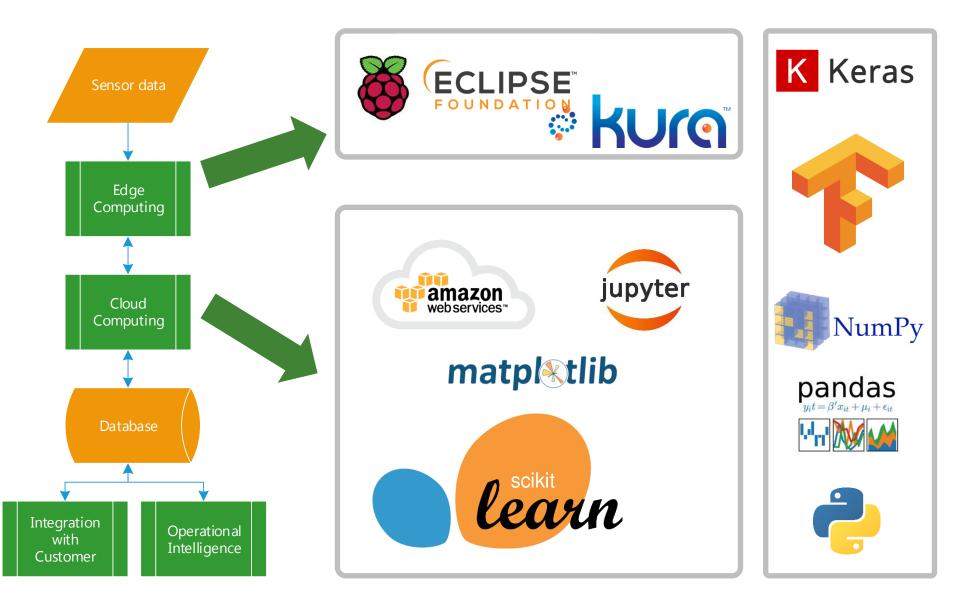
DB

System architecture: service delivery



6 DB Systel GmbH | Dr. Daniel Germanus, Felix Bert | FOSDEM | February 2019

System architecture: data & analysis pipeline



Example equipment: escalators

- DB operates ~1000 of those in .de
- Escalator failures result in high material and personnel costs
- Also, due to accessibility, contractual penalties are raised in case of inavailability 0600-2200
- Some failures kick in really fast → immediate detection important!

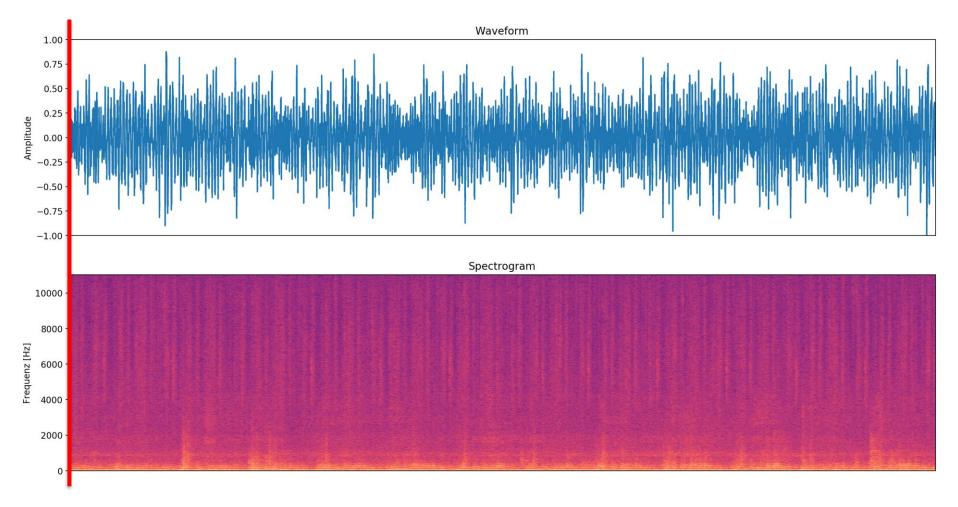


Example equipment: escalator failures

- Failures include
 - Foreign bodies intrude steps/combs
 - Coins
 - Glass
 - Crushed gravel
 - Screws
 - Steps and guiding rails wear off
 - Heavy lifting for years
 - Propagation to other parts of the machinery

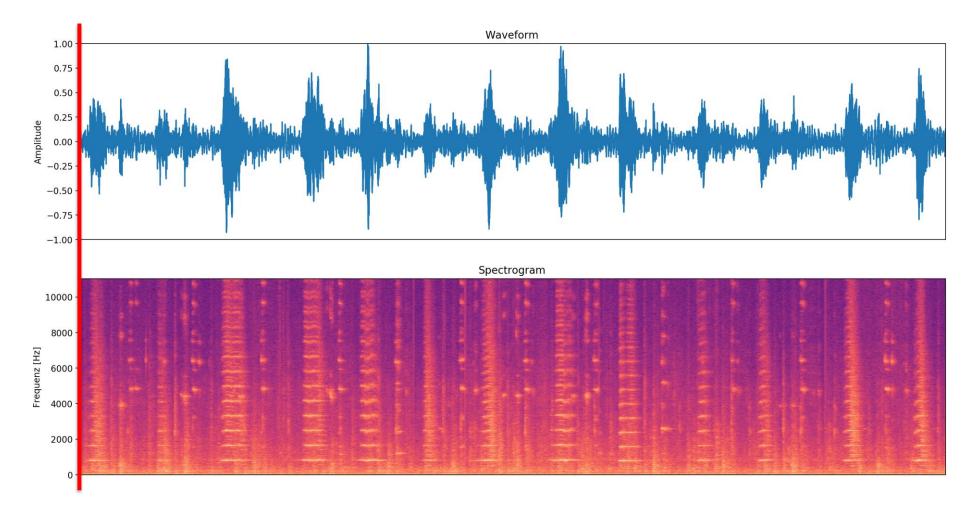
DB

Example equipment: escalator sound sample



Hamburg: good case

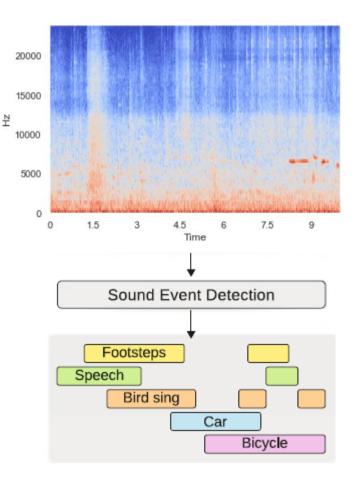
Example equipment: escalator sound sample



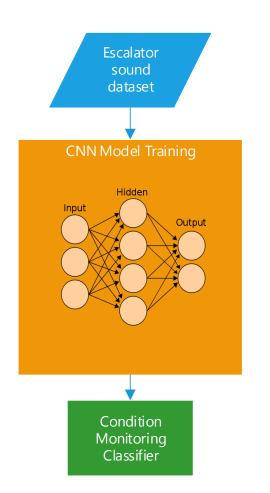
Hamburg: squeaks due to poorly adjusted steps

Machine learning approach: sound event detection using convolutional neural networks (CNNs)

- CNNs established for predictions on images
 - we feed spectrograms
 - Annotations do exist for severe failures and their (audible) preconditions
- CNNs provide classification
 - Likelihood of a failure precondition being active
- Do postprocessing in order to reduce oscillation!
- Now, how could transfer learning (TL) help?
 - Little data, grouching customers!
 - Data collection is lengthy and expensive



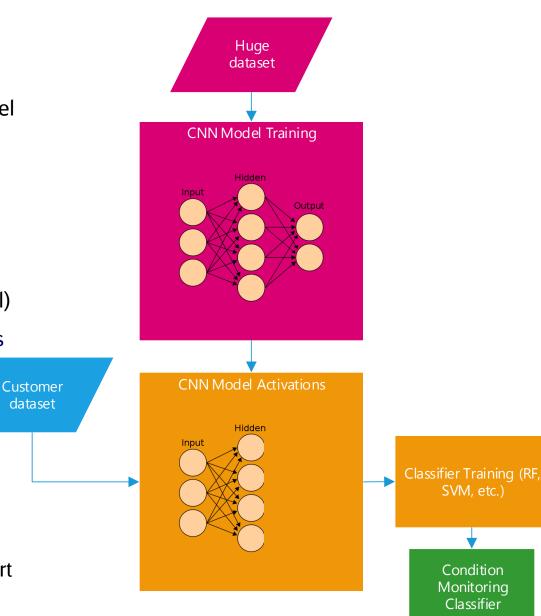
Back to the escalator case: deep learning opposed to our transfer learning approach



- CNN training and prediction drawbacks:
 - Requirements on minimum dataset size
 - Retraining required for
 - new sound events
 - new/adjusted annotations

Back to the escalator case: deep learning opposed to our transfer learning hybrid approach

- Transfer Learning
 - Train using huge dataset for base CNN model (train once, no recent customer data): Imagenet, AudioSet
 - Variety of evaluated CNN architectures include: InceptionV3 and VGG16
 - Pick CNN model's activation on actual (small) customer data set: DCASE17, DB escalators
 - Pick activations in order to train another classifier
 - Random Forest (RF), Support Vector Machine (SVM), etc.
 - Predictions possible even for very little customer data, allows ramp up/quick start

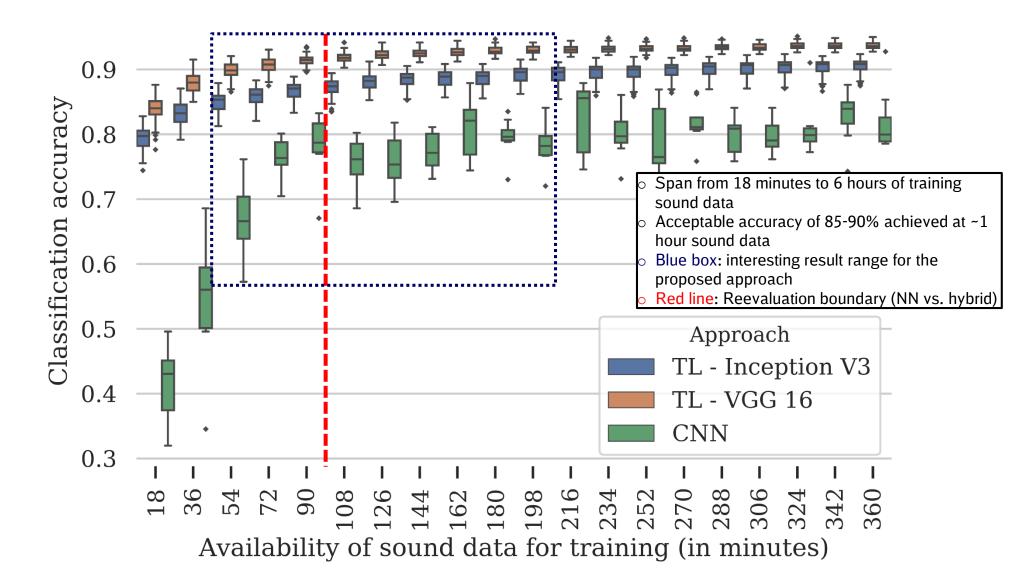


Evaluation overview

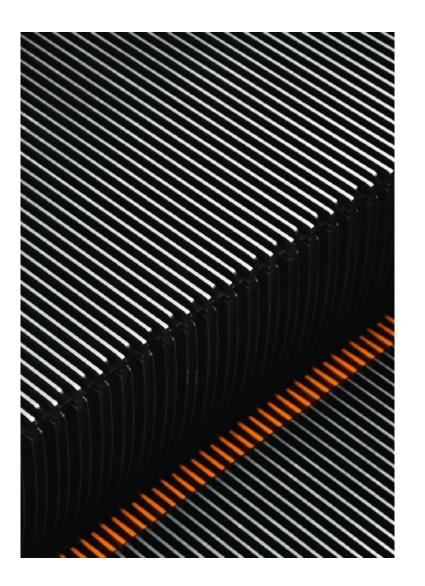
- Chosen parameters for the evaluation experiments shown on the next slides:
 - Huge dataset: ImageNet
 - Network architectures: InceptionV3, VGG 16
 - Customer dataset: DB Escalators
 - Classifier: Random Forest
- Overall evaluation goals:
 - Identify accuracy of pure NN and TL hybrid approaches
 - Identify dataset size ranges for which either of the two approaches is preferrable



Cross-validated evaluation results on DB escalators dataset



Conclusion & limitations



- Customer perspective: reduce time to market significantly (for appropriate use cases)
- Business perspective: less expert time required for initial data labelling
- Technical perspective:
 - improved accuracy on small datasets
 - Possibility of choosing classifiers insensitive to overfitting
- Limitations:
 - high variance for very small datasets (< 30m)
 - hybrid approach's advantageous range is use case dependent

Next steps

- Determine the approach's suitability for various use cases over 2019/2020
- Preparation and provision of a dedicated "huge audio data set" based on DB condition monitoring use cases
- Assess the approach's suitability for IoT-like edge computing (learning at the edge, low bandwidth scenarios)

DB

Tutorial

Comment to the Program & Session Chair:

We've prepared a Jupyter Notebook featuring a tutorial, there are at least two possibilities:

- 1. We just provide a link to github (no additional time)
 - 2. Walk through with audience (+10 minutes)

So either we stick with 20 minutes for the talk or extend it to 30 minutes in total including the walk through. Let's get in touch.

Thanks for your attention - time for Q&A!

DB DB B.Sc. Engineering Management M.Sc. Computer Science Dr. Daniel Germanus Tel. +49 69 265-28267 Felix Bert Tel. +49 69 265-28267 Chief Architect Machine Learning daniel.germanus@deutschebahn.com Data Scientist felix.bert@deutschebahn.com Strategic Architecture Management **Application Architecture** DB Systel GmbH DB Systel GmbH Jürgen-Ponto-Platz 1 Jürgen-Ponto-Platz 1 60329 Frankfurt am Main 60329 Frankfurt am Main www.dbsystel.de www.dbsystel.de