Condition Monitoring & Transfer Learning
Good predictions in situations with (initially) almost no data
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Background
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Condition Monitoring is a precondition to
achieve predictive maintenance!

What kind of Deutsche Bahn equipment could
be monitored?

What kind of sensor seems universal?

We’ve founded a DB Systel Venture called
Acoustic Infrastructure Monitoring and listen to

our equipment!
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Challenges galore

Generalization

Little data (in the beginning)

Little expert time

Immediate expectation of cost savings

We chose a machine learning approach

- But: machine learning is also a tricky subject!
- Today we present transfer learning to

leverage a quick start with the customer

 tl;dr: equipment breaks, we detect it early on
using microphones and apply transfer learning

to do it even better than w/o ;-)
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DB

Condition Monitoring Goals:

1. Decrease maintenance costs
2. Optimize personnel placement
3. Increase availability

[1] ,Condition Monitoring and Diagnostics of machines - Vocabulary“in ISO 13372
[2] ,Development of Acoustic Emission Technology for Condition Monitoring and Diagnosis of Rotating Machines; Bearings, Pumps,
Gearboxes, Engines and Rotating Structures” in The Shock and Vibration Digest, Vol 38(1), 2006, David Mba and Raj B. K. N. Rao
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Transfer Learning Goals:

1. Increase prediction accuracy
2. Quick start with customer

[3] ,Transfer Learning will radically change machine learning for engineers® direct quote of Andrew Ng at NIPS 2016
[4] ,.Deep Learning“ MIT Press, Ch. 15, 2016, lan Goodfellow, Yoshua Bengio, and Aaron Courville
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System architecture: service delivery
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System architecture: data & analysis pipeline
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Example equipment: escalators
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DB operates ~1000 of those in .de
Escalator failures result in high material
and personnel costs

Also, due to accessibility, contractual
penalties are raised in case of
inavailability 0600-2200

Some failures kick in really fast —

immediate detection important!
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Example equipment: escalator failures

* Failures include
Foreign bodies intrude steps/combs
« Coins
« Glass
* Crushed gravel

« Screws

Steps and guiding rails wear off
* Heavy lifting for years

Propagation to other parts of the machinery
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Example equipment: escalator sound sample
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Hamburg: good case

11 DB Systel GmbH | Dr. Daniel Germanus, Felix Bert | FOSDEM | February 2019




Example equipment: escalator sound sample
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Machine learning approach: sound event detection using
convolutional neural networks (CNNs)

* CNNs established for predictions on images

we feed spectrograms
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Back to the escalator case: deep learning opposed to our
transfer learning approach

« CNN training and prediction drawbacks:
Escalatoclvr - Requirements on minimum dataset size
soun

dataset - Retraining required for

« new sound events

CNN Model Training

* new/adjusted annotations

Condition
Monitoring
Classifier
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Back to the escalator case: deep learning opposed to our

transfer learning hybrid approach

» Transfer Learning
Train using huge dataset for base CNN model
(train once, no recent customer data):
Imagenet, AudioSet
Variety of evaluated CNN architectures
include: InceptionV3 and VGG16
Pick CNN model’s activation on actual (small)

customer data set: DCASE17, DB escalators

- Pick activations in order to train another &S

e dataset
classifier

- Random Forest (RF), Support Vector

Machine (SVM), etc.
« Predictions possible even for very little

customer data, allows ramp up/quick start
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Evaluation overview

« Chosen parameters for the evaluation
experiments shown on the next slides:
Huge dataset: ImageNet
Network architectures: InceptionV3, VGG 16
Customer dataset: DB Escalators

Classifier: Random Forest

« Overall evaluation goals:
Identify accuracy of pure NN and TL hybrid

approaches
Identify dataset size ranges for which either of

the two approaches is preferrable
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DB

Cross-validated evaluation results on DB escalators dataset
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Conclusion & limitations

NN

» Customer perspective: reduce time to market
significantly (for appropriate use cases)
» Business perspective: less expert time required
for initial data labelling
» Technical perspective:
- improved accuracy on small datasets
- Possibility of choosing classifiers insensitive to

overfitting

Limitations:
- high variance for very small datasets (< 30m)
- hybrid approach’s advantageous range is use

case dependent
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Next steps
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Determine the approach’s suitability for various
use cases over 2019/2020

Preparation and provision of a dedicated “huge
audio data set” based on DB condition monitoring
use cases

Assess the approach’s suitability for loT-like edge
computing (learning at the edge, low bandwidth

scenarios)



Tutorial

Comment to the Program &
Session Chair:

We’ve prepared a Jupyter Notebook featuring a tutorial, there are at least two
possibilities:

1. We just provide a link to github (no additional time)
2. Walk through with audience (+10 minutes)

So either we stick with 20 minutes for the talk or extend it to 30 minutes in total
including the walk through. Let’s get in touch.
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Thanks for your attention - time for Q&A!

M.Sc. Computer Science B.Sc. Engineering Management
Dr. Daniel Germanus el +49 69 265-28267 Felix Bert Tel. +49 69 265-28267
Chief Architect Machine Learning  daniel.germanus@deutschebahn.com Data Scientist felix.bert@deutschebahn.com
Strategic Architecture Management Application Architecture
DB Systel GmbH DB Systel GmbH
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23 DB Systel GmbH | Dr. Daniel Germanus, Felix Bert | FOSDEM | February 2019




