
D-Wave Hybrid

An Overview

Radomir Stevanovic

D-Wave



© D-Wave Systems Inc. 2

Ocean Software Stack



© D-Wave Systems Inc. 3

github.com/dwavesystems/dwave-hybrid

• Hybrid Asynchronous Decomposition Sampler framework

• Minimal, Python, solver/sampler-building framework, built atop Ocean tools

• Leverages quantum and classical resources

• Independent parts are executed concurrently

• Problems are broken into pieces that fit the compute resources

• Uses sample sets (probabilistic approach)



© D-Wave Systems Inc. 4

Motivation

Loop(RacingBranches(
InterruptableTabuSampler(),
EnergyImpactDecomposer(size=50)
| QPUSubproblemAutoEmbeddingSampler()
| SplatComposer()

) | ArgMin())



© D-Wave Systems Inc. 5

Goals

• Code outlines/visualizes the algorithm

• Code is easy to tweak, extend, 
experiment, benchmark and profile

• Simplicity is balanced with expressiveness

• Library of building blocks provided, 
extendable by developers

Loop(RacingBranches(
InterruptableTabuSampler(),
EnergyImpactDecomposer(size=50)
| QPUSubproblemAutoEmbeddingSampler()
| SplatComposer()

) | ArgMin())



© D-Wave Systems Inc. 6

Demo



© D-Wave Systems Inc. 7

Framework Primitive: Runnable Type

Loop(RacingBranches(
InterruptableTabuSampler(),
EnergyImpactDecomposer(size=50)
| QPUSubproblemAutoEmbeddingSampler()
| SplatComposer()

) | ArgMin())

• All components implement
the Runnable type

• Act on input State(s), produce output State(s)

• Execute asynchronously (.run() and .stop())

• Composable top-down (tree); traits constrain connectivity; profiled by default



© D-Wave Systems Inc. 8

Framework Primitive: State

• Immutable mapping type

• Passed between Runnable components, 
wrapped in Future

• Carries the problem, subproblem, 
samples, etc.

• Compliance with component's traits 
checked during runtime



© D-Wave Systems Inc. 9

Modifying Workflow Parameters

• Solve subproblems (of size 50 variables), at different points (samples), one per iteration
– Keep unrolling (deconstructing) up to 15% of the input problem variables (in order of energy impact)

• Upper bound on loop count, terminate if no improvement after 3 iterations

subproblem = EnergyImpactDecomposer(size=50, rolling_history=0.15)

subsampler = QPUSubproblemAutoEmbeddingSampler()
| SplatComposer()

iteration = RacingBranches(

InterruptableTabuSampler(),
subproblems | subsampler

) | ArgMin()

workflow = Loop(iteration, max_iter=1e3, convergence=3)



© D-Wave Systems Inc. 10

Modifying Workflow Structure

subproblems = Unwind(

EnergyImpactDecomposer(size=50, rolling_history=0.15, silent_rewind=False))

subsampler = Map(QPUSubproblemAutoEmbeddingSampler())
| Reduce(Lambda(merge_substates))
| SplatComposer()

iteration = RacingBranches(
InterruptableTabuSampler(),
subproblems | subsampler

) | ArgMin()

workflow = Loop(iteration, max_iter=1e3, convergence=3)

• Deconstruct 15% of the problem into multiple subproblems (at the same sample)
– Solve them all in parallel on the QPU

– Merge subsamples

– Compose with the original sample



© D-Wave Systems Inc. 11

Modifying Workflow Structure

subproblems = Unwind(
EnergyImpactDecomposer(size=50, rolling_history=0.15, silent_rewind=False))

qpu = Map(QPUSubproblemAutoEmbeddingSampler())
| Reduce(Lambda(merge_substates))
| SplatComposer()

random = Map(RandomSubproblemSampler())

| Reduce(Lambda(merge_substates))
| SplatComposer()

subsampler = Parallel(qpu, random, endomorphic=False) | ArgMin()

iteration = RacingBranches(
InterruptableTabuSampler(),
subproblems | subsampler

) | ArgMin()

workflow = Loop(iteration, max_iter=1e3, convergence=3)

• Deconstruct 15% of the 
problem into subproblems
– Solve them all in parallel on the 

QPU

– But also solve them using a 
second/classical subsampler 
(random here)

– All in parallel



© D-Wave Systems Inc. 12

On Problem Decomposition

• When problem doesn't fit the computing device
– Memory, parallelism/cores, bit-length, GPU pipeline, QPU size/structure

• Tailored to problem class and purpose/device
– "no free lunch"

– no "right", or general, approach to problem decomposition

• No shortage of ideas for decomposition:
– Energy based, connectivity/structure based...

• (Or hybrid solvers):
– Based on tabu search, parallel tempering, dialectic search, branch and bound, diversity-preserving 

sampling, genetic algorithms...



© D-Wave Systems Inc. 13

Constructing Runnables

• Extend hybrid.Runnable'smethods:
• init(), next(), error(), halt()

• Implement a flow control 
block, a sampler, or a problem 
decomposer tailored to your problem 
(class)

• Share it!



© D-Wave Systems Inc. 14

Contributions Welcome

• https://github.com/dwavesystems/dwave-hybrid/issues
– more samplers (parallel tempering, ICM, reverse anneal)

– more decomposing strategies (e.g. BFS, PFS traversal in EID)
– more composing strategies –better support for multiple samples per state 

(alternative to "best sample splat")

– more flow control blocks
– sample diversity-preserving sampleset pruning

– CoW State

– more Runnable Executors (celery, asyncio?)

• Developer survey
– https://www.surveymonkey.com/r/LJM96GT


