

Practical Quantum Computing

An Introduction

Alexander Condello D-Wave

D-Wave Leap[™]

The Only Real-Time Quantum Application Environment

l ean In	
Leap III	
EMAIL ADDRESS iane@gmail.com	
1.22	
PASSWORD	
Forgot p	essword?
LOG IN Don't have an account?	Sign up
Free Real-Time Cloud Access	
Integrated Open Source ADE	
Demos and Reference Code	
Community Support	

Enabling a New Developer Community

Online Training

Why Quantum Computing Gets So Much Attention

- End of Moore's Law
- Classical systems' power consumption is reaching its limits
- Potential to address NP-hard problems
- Huge potential speedup over classical approaches on some problems

The Ouantum Computing

Practical

Adiabatic Quantum Computing (AQC) [Farhi et al. `01]

- System is evolved from the lowest-energy state of an easy problem to the lowest-energy state of a target problem
- If evolution is gradual enough, system remains in the lowest energy state
- Initially, the state is a superposition of all classical states
 Why AQC?
- Computationally equivalent to gate-model [Aharonov et al. `08]

How To Build a Quantum Computer

The Quantum Computing Company™

Quantum Processor Unit (QPU)

 $PE_{\mu} = m_{\mu}h$ $PE_{\mu} = \frac{1}{2}kr(\Delta x)$ denotes the factors r^{2}

ma ier ranan et enteit set tes tie thates et

 (\mathbf{p})

Quantum Machine Language Programming

QUBIT	q i	Quantum bit which participates in annealing cycle and settles into one of two possible final states: $\{0,1\}$
COUPLER	$\boldsymbol{q}_{i}\boldsymbol{q}_{j}$	Physical device that allows one qubit to influence another qubit
WEIGHT	a _i	Real-valued constant associated with each qubit , which influences the qubit's tendency to collapse into its two possible final states; controlled by the programmer
STRENGTH	b _{ij}	Real-valued constant associated with each coupler , which controls the influence exerted by one qubit on another; controlled by the programmer
OBJECTIVE	Obj	Real-valued function which is minimized during the annealing cycle

$$Obj(a_i, b_{ij}; q_i) = \sum_i a_i q_i + \sum_{ij} b_{ij} q_i q_j$$

The Quantum Computing Company~

Binary Quadratic Model

$$E(v) = \sum_{i,j} b_{i,j} v_i v_j + \sum_i a_i v_i + c$$
$$a_i, b_{i,j}, c \in \mathbb{R}$$
$$v_i \in \{-1, +1\} \text{ or } v_i \in \{0, 1\}$$

Synonyms

- Binary Quadratic Model
- Ising Model
- Quadratic Unconstrainted Binary Optimization Problem
- Probabilistic Graphical Model
- Restricted Boltzman Machine

Binary Quadratic Model

$$E(v) = \sum_{i,j} b_{i,j} v_i v_j + \sum_i a_i v_i + c$$
$$a_i, b_{i,j}, c \in \mathbb{R}$$
$$v_i \in \{-1, +1\} \text{ or } v_i \in \{0, 1\}$$

Landscape metaphor

Space of solutions defines an energy landscape and the best solution is the lowest valley

Classical algorithms can only walk over this landscape

Quantum annealing uses quantum effects

Sampling

QPU is probabilistic

- Finding a ground state
- Sampling ground states
- Characterizing the landscape
 - Machine learning
 - Material simulation

Is it possible to express problems as BQMs?

Ising formulations of many NP problems	
Andrew Lucas * Lyman Laboratory of Physics, Department of Physics, Harvard University, Cambridge, MA, USA	
Edited by: We provide Ising formulations for many NP-complete and NP-hard problems, including all of Karp's 21 NP-complete problems. This collects and extends mappings to the Ising model from partitioning, covering, and satisfiability. In each case, the required number of spins is at most cubic in the size of the problem. This work may be useful in designing adiabatic quantum optimization algorithms.	
Partitioning Problems	
Graph Partitioning	
Cliques	
Reducing N TO logN Spins in Some Constraints	
🔲 Binary Integer Linear Programming	
✓ ☐ Covering and Packing Problems ☐ Hamiltonian Cycles and Paths	
Exact Cover	
🗍 Set Packing 🗸 🗍 Tree Problems	
🗍 Vertex Cover 🗍 Minimal Spanning Tree with a Maximal Degree C	onstraint
🗍 Satisfiability	
🗍 Minimal Maximal Matching	
✓ ☐ Problems with Inequalities ☐ Undirected Feedback Vertex Set	
🗍 Set Cover 🗍 Feedback Edge Set	
🔲 Knapsack with Integer Weights 📃 Graph Isomorphisms	

Customer's Early Applications

Results At Scale

nature

Letter | Published: 22 August 2018

Observation of topological phenomena in a programmable lattice of 1,800 qubits

Andrew D. King⊠, Juan Carrasquilla, […] Mohammad H. Amin

Nature 560, 456–460 (2018) | Download Citation 🕹

Science Home News Journals Topics Careers

SHARE REPORT

R. Harris^{1,*}, Y. Sato¹, A. J. Berkley¹, M. Reis¹, F. Altomare¹, M. H. Amin^{1,2}, K. Boothby¹, P. Bunj + See all authors and affiliations

Science 13 Jul 2018: Vol. 361, Issue 6398, pp. 162-165 DOI: 10.1126/science.aat2025 "This paper represents a breakthrough in the simulation of physical systems which are otherwise essentially impossible,"

- Dr. J. Michael Kosterlitz, 2016 Nobel laureate in Physics

"...D-Wave scientists and engineers have accomplished a premiere goal of scientific computing..."

"...the problem they've attacked is one of immediate significance to today's advanced technology sectors and it is the first truly useful application of a quantum computer."

- E.H. "Ned" Allen Ph.D., Chief Scientist and Corporate Senior Fellow at Lockheed Martin

Why is this interesting to the open source community

- New and exciting field for computing
- There are problems best solved on classical resources
 - Need developers on the classical side
- You can try these things for yourself
 - We in the open source space thrive on growth and debate

Take the Leap

Sign up with Leap. Create an account for free time on a D-Wave quantum computer, to learn the basics, and to run your own quantum experiments.

	LAST NAME*	
Emily	Smith	
EMAIL*		
emilv@amail.com		
crimyaginan.com		
Please select a profession	n	¢
- Please select a profession	n	¢

🔺 🗕 🖬 🗙

ው 🕁 🥑 🗿 💷 ዕ

Demo 2 > Try it on the D ×

← → C ≜ https://cloud.dwavesys.com/leap/demos/socialnetwork/try-it

D::Wave Lear

SOCIAL NETWORK ANALYSIS

Try it on the D-Wave quantum computer

SYRIAN DATASET

A study of the violent extremist network in Syria found that the network was balanced in 2012. However, in 2013 an increase in active groups in the Syrian theatre changed the existing landscape significantly.

Here is the network for the Syrian theatre in 2013. Click to run on the quantum computer to compute its structural balance.

SOLVE THIS PROBLEM USING THE D-WAVE QUANTUM COMPUTER

RUN

PREVIOUS STEP

_ **□** ×

The Quantum Computing Company™

🛧 🕜 🔘 💷 🚺

The Quantum Computing Company™

https://support.dwavesys.com/hc/en-us/community/topics?flash_digest=ef4de9b91586e20ad123	3ae4027de70b5be2ec45b	* • • • •
D:Wave Lear Dashboard Resources	Community Help Murray v	
Leap Help > Community	Q Search	
Topics Posts	NEW POST	
Welcome to the Community! General information about the Leap community.	General Discussion Topics which do not fall under any of the existing categories.	
3 posts - 2 followers	9 posts • 4 followers	
Quantum Computing Concepts	Coding Tips and Tricks	
Discussion related to basic quantum computing concepts.	Share your ideas on how write effective code for the QPU and troubleshoot issues.	
	0 posts - 1 follower	
Documentation and Learning Resources	Feature Requests	
Questions and discussion about system documentation, Ocean documentation and Jupyter Notebooks	Have a new feature in mind? Share it here.	(?) Help
	7 posta + o tonomera	_

2

The Quantum Computing Company™

D-Wave's Software Development Kit

Ocean

Alexander Condello D-Wave

Landscape metaphor

Space of solutions defines an energy landscape and the best solution is the lowest valley

Classical algorithms can only walk over this landscape

Quantum annealing uses quantum effects

Binary Quadratic Model

$$E(v) = \sum_{i,j} v_i v_j a_{i,j} + \sum_i v_i b_i + c$$
$$a_i, b_{i,j}, c \in \mathbb{R}$$
$$v_i \in \{-1, +1\} \text{ or } v_i \in \{0, 1\}$$

Quantum Machine Instruction

$$E(s) = \sum_{i,j} s_i s_j J_{i,j} + \sum_i s_i h_i$$
$$J_{i,j} \in [-2,1], h_i \in [-2,2]$$
$$s_i \in \{-1,+1\}$$

Has a particular graph, defined by the hardware

The Quantum Computing Company

How do I program with BQMs?

D-Wave's Ocean Software

Ocean software is a suite of tools D-Wave Systems provides on the D-Wave GitHub repository for solving hard problems with quantum computers.

- Tools for solving BQM problems.
- Python front-end, some C++ components
- Majority is open-source code available on GitHub.
- Extensions and features from community welcome!

How does it all fit together?

Programming Model

Ocean Software Stack

The Quantum Computing Company™

dimod

dimod

- Provides objects used throughout the Ocean stack
 - BQM
 - Sampler ABC

dimod

Mapping Methods

Uniform Sampler API

Compute Resources

dimod

dwave-cloud-client

- Handles communication with the QPU
- Stores token locally for reuse

Mapping Methods

Uniform Sampler API

dwave-cloudclient

Compute Resources

dimod

Access QPU as a Sampler
 minorminer

Mapping Methods

• Tools for embedding problems onto the QPU

dimod

- Simulated annealing dwave-tabu
- Tabu search

The Quantum Computing Company"

QPU Programming Method

- 1. Translate your problem to binary optimization
- 2. Define your BQM function
- 3. Put the coefficients in matrix form
- 4. Run the matrix through a sampler
- 5. Post-process to interpret the results

Example

- Given:
 - Network of pipelines
- What do we want:
 - A set of junctions from which we can monitor every pipeline segment

The Quantum Computing Company"

Image from National Energy Board of Canada,

https://www.neb-one.gc.ca/nrg/ntgrtd/mrkt/nrgsstmprfls/ab-eng.html

Without Ocean algorithm tools....

1. Write our problem in binary optimization form ∇

min
$$\sum_{i} x_{i}$$

s.t.
$$\sum_{(u,v)\in E} (x_{u} \cdot x_{v} - x_{u} - x_{v}) > 0$$

2. Translate to a QUBO

$$\min\left(\sum_{i} x_{i}\right) + \gamma\left(\sum_{(u,v)\in E} (x_{u} \cdot x_{v} - x_{u} - x_{v})\right)$$

3. Simplify down to a QUBO matrix

-1	1	1	0	0	0	0
1	-1	1	0	0	0	0
1	1	-3	1	1	0	0
0	0	1	-2	1	1	0
0	0	1	1	-2	1	0
0	0	0	1	1	-2	1
0	0	0	0	0	1	0

The Ouantum Computing Company

Without Ocean algorithm tools....

With Ocean algorithm tools!

- Identify the type of problem (e.g. min vertex cover)
- Search the Ocean Tool Suite for a tool

dwavesystems / dwave_i	hetworkx	Watch * 8 * Unstar 30 § Fork 19
Code Issues 13	17 Pull requests 0 🔲 Projects 0 💷 Wiki 🔟 Insigh	nts
Branch: master - dwave_net	workx / dwave_networkx / algorithms /	Create new file Upload files Find file History
arcondello Add documentation	for chimera canonicalization	Latest commit ee8cff1 on Oct 12
tests	Add canonical_chimera_labelling	2 months ago
TSP.py	updated Larange description	3 months ago
initpy	Add canonical_chimera_labelling	2 months ago
canonicalization.py	Add documentation for chimera canonicalization	2 months ago
clique.py	Adding Maximum Clique method and a few other helper me	ethods for maxim 6 months ago
coloring.py	Improving documentation for minimum vertex coloring func-	ction. 6 months ago
cover.py	Add unit tests for weighted versions of cover and independ	ent set 7 months ago
limination_ordering.py	autopep8	7 months ago
independent_set.py	Fixed documentation on line 220	6 months ago
matching.py	autopep8	7 months ago
max_cut.py	Fix errors in docstring examples	7 months ago
social.py	Add structural_imbalance_ising function	7 months ago

• Write a Python program *in our problem domain* and call the tool

Python Program using QPU

import networkx as nx
import dwave_networkx as dnx
from dwave.system import DWaveSampler, EmbeddingComposite

sampler = EmbeddingComposite(DWaveSampler())

G = nx.Graph()

G.add_edges_from([(1,2),(1,3),(2,3),(3,4),(3,5),(4,5),(4,6), (5,6),(6,7)])

cover = dnx.min_vertex_cover(G, sampler=sampler)

Where to find more information

• Read-the-docs

– https://docs.ocean.dwavesys.com

D-Wave Ocean tools are documented on Read the Docs. Click on a link below for the documentation for each tool (or the link in parentheses for the tool repository located at D-Wave on GitHub).

Ocean Software

Tool	Description			
dimod (repo)	Shared API for binary quadratic samplers. dimod provides a binary quadratic model (BQM) class that contains lsing and quadratic unconstrained binary optimization (OUBO) models used by samplers such as the D-Wave system. It also provides utilities for constructing new samplers and composed samplers.			
dwave-cloud-client (repo)	Minimal implementation of the REST interface used to communicate with D- Wave Sampler API (SAPI) servers.			
dwave_networkx (repo)	Extension of NetworkX—a Python language package for exploral and analysis of networks and network algorithms—for users of D Wave Systems. dwave_networkx provides tools for working with Chimera graph implementations of graph-theory algorithms on the D-Wave syst and other binary quadratic model samplers.			
dwave-system (repo)	Basic API for easily incorporating the D-Wave system as a sampler in the D-Wave Ocean software stack. It includes DWaveSampler, a dimod sampler that accepts and passes system parameters such as system identification and authentication down the stack. It also includes several useful composites—layers of pre- and post-processing—that can be used with DWaveSampler to handle minor-embedding, optimize chain strength, etc.			
	API for getting platform independent paths to user data and configuration			

Where to look at code and contribute

• D-Wave's Github

<u>https://github.com/dwavesystems</u>

The Quantum Computing Company"

What if there isn't a tool for my application?

OPTION 1

- 1. Develop BQM
- 2. Write Python program.
 - Set sampler to be used
 - sampler.sample(bqm)
 - Interpret results

What if there isn't a tool for my application?

OPTION 1

- 1. Develop BQM
- 2. Write Python program
 - Set sampler to be used
 - sampler.sample(bqm)
 - Interpret results

OPTION 2

- 1. Develop BQM
- 2. Write a reusable tool.
- 3. Write Python program that calls that tool.
- 4. Submit your tool to be included in our library.

How to contribute to Ocean

- Anyone can contribute to Ocean by making a pull request in GitHub.
- For a guide on how to make a pull request, check out this site:

https://www.digitalocean.com/community/tutorials/how-to-create-a-pull-request-on-github

How to install

Installing the Ocean Tool Suite:

pip install dwave-ocean-sdk

- D-Wave's Github
 - <u>https://github.com/dwavesystems</u>
- Read-the-docs
 - <u>https://docs.ocean.dwavesys.com/en/latest/</u>

