
Elaborate WebRTC Media
with Artificial Intelligence
Let Janus, OpenCV and A.I. work together!

Paolo Saviano
Full Stack developer @Meetecho

psaviano@meetecho.com

WebRTC and Artificial Intelligence?

● Absolutely fascinating matter
Real Time Computer Vision & Sound Recognition
Data collection and live elaboration
Broadcasting experience customized by users

● A lot of scenarios with different requirements
Massive broadcasting, small videorooms, device networks
Device constraints, Time constraints…
Must choose!

● Make it simple, it’s a project so young!
Remove constraints
Focus on video elaboration
Explore the results

2

What we want from this project

● Handle the video media in a comfortable way
Receive and elaborate the Janus RTP stream without (too much) manipulation

● Minimize the client side effort
Avoid client-side elaboration
Do not overload the client’s bandwidth

● Keep an eye on scalability
Put everything in a nutshell and replicate it, if needed

● Play in the home pitch using known languages and environments

3

What we want from this project

● Handle the video media in a comfortable way
Receive and elaborate the Janus RTP stream without (too much) manipulation

● Minimize the client side effort
Avoid client-side elaboration
Do not overload the client’s bandwidth

● Keep an eye on scalability
Put everything in a nutshell and replicate it, if needed

● Play in the home pitch using known languages and environments

Open
Cv

3

What we want from this project

● Handle the video media in a comfortable way
Receive and elaborate the Janus RTP stream without (too much) manipulation

● Minimize the client side effort
Avoid client-side elaboration
Do not overload the client’s bandwidth

● Keep an eye on scalability
Put everything in a nutshell and replicate it, if needed

● Play in the home pitch using known languages and environments

serv
er-

side

Open
Cv

3

What we want from this project

● Handle the video media in a comfortable way
Receive and elaborate the Janus RTP stream without (too much) manipulation

● Minimize the client side effort
Avoid client-side elaboration
Do not overload the client’s bandwidth

● Keep an eye on scalability
Put everything in a nutshell and replicate it, if needed

● Play in the home pitch using known languages and environments

containers :)

serv
er-

side

Open
Cv

3

What we want from this project

● Handle the video media in a comfortable way
Receive and elaborate the Janus RTP stream without (too much) manipulation

● Minimize the client side effort
Avoid client-side elaboration
Do not overload the client’s bandwidth

● Keep an eye on scalability
Put everything in a nutshell and replicate it, if needed

● Play in the home pitch using known languages and environments

J
a
v
a
S
c
r
ip

t
-
is

h

serv
er-

side

containers :)

Open
Cv

3

What we will use
● Video Capture (WebRTC)

Janus WebRTC Server (http://github.com/meetecho/janus-gateway)

● Video elaboration and Sampling
opencv4nodejs (https://github.com/justadudewhohacks/opencv4nodejs)

● Server
NodeJS (https://nodejs.org)

● Containerization
Docker (https://www.docker.com)

● Language
TypeScript (https://www.typescriptlang.org)

4

http://github.com/meetecho/janus-gateway
https://github.com/justadudewhohacks/opencv4nodejs
https://nodejs.org
https://www.docker.com
https://www.typescriptlang.org

Architecture

● The Janus Videoroom Plugin
WebRTC entrypoint for media producers
Forwards received stream as RTP stream

Janus VideoRoom

WebRTC

Client

5

Architecture

● The Janus Videoroom Plugin
WebRTC entrypoint for media producers
Forwards received stream as RTP stream

● The Video Stream Elaborator
Elaborates received RTP video streams
Returns elaboration results as UDP messages

Janus VideoRoom

WebRTC

Client
RTP

5

Architecture

● The Janus Videoroom Plugin
WebRTC entrypoint for media producers
Forwards received stream as RTP stream

● The Video Stream Elaborator
Elaborates received RTP video streams
Returns elaboration results as UDP messages

● The Janus Streaming Plugin
WebRTC entrypoint for media receivers
Forwards received streams (RTP & UDP)
to WebRTC clients through media stream
or datachannels

RTP

R
T
P

U
DP

Janus VideoRoom

Janus streaming

WebRTC

Client

WebRTC

Client

5

● Two containers
Create a more flexible architecture

A container to rule them all

VideoRoom

Streaming

6

● Two containers
Create a more flexible architecture

● Multiple streams, same elaboration
Each of them elaborated by a dedicated instance

● Single stream, multiple elaborations
Different elaborations on same stream in parallel
Let users display results in a selective way

A container to rule them all

RTP

U
DP

VideoRoom

Streaming

6

A container to rule them all

● Two containers
Create a more flexible architecture

● Multiple streams, same elaboration
Each of them elaborated by a dedicated instance

● Single stream, multiple elaborations
Different elaborations on same stream in parallel
Let users display results in a selective way

● Reconfiguration
Replace containers according to our needs
Use an external RTP source Streaming

RTP

U
DP

6

● Two containers
Create a more flexible architecture

● Multiple streams, same elaboration
Each of them elaborated by a dedicated instance

● Single stream, multiple elaborations
Different elaborations on same stream in parallel
Let users display results in a selective way

● Reconfiguration
Replace containers according to our needs
Use an external RTP source
Save elaborated data without live UDP feedbacks

A container to rule them all

Store

RTP

R
es

ul
ts

VideoRoom

6

● The idea
Break the elaboration flow in several steps
Create a superclass that takes care of all the under the hood tasks
Let programmers implement only the target-specific code using a inherited class

● The code flow of our video elaboration

Let’s Code!

Receive

Stream

Sample

incoming

video

image

Preprocess

frame

elaboration

Result

postprocess

7

● The idea
Break the elaboration flow in several steps
Create a superclass that takes care of all the under the hood tasks
Let programmers implement only the target-specific code using a inherited class

● The code flow of our video elaboration

Let’s Code!

Receive

Stream

Sample

incoming

video

image

Preprocess

frame

elaboration

Result

postprocess

Vp8?

H264?

Port?

Frequency? Same step? What Do I

have to do?

7

The superclass interface

export interface ModelMethods<T extends Detection> {

 train(trainSet: any[], label?: any[]): void,

 classify(image: cv.Mat, frame_counter: number): Promise<any[]>,

 configure(config?: object): void,

 getVideoInput(pipe?: string): object,

 stopElaboration(): void,

 startElaboration(pipe?: string, elaborating_rate?: number): Promise<void>,

 elaborateVideo(sampling_rate: number): Promise<T[]>,

 elaborateResults(output: T[]): void,

}

8

The superclass interface

abstract train(trainSet?: any[], label: any[]): void; // if needed

abstract classify(object: cv.Mat, frame_counter: number): Promise<any[]>;

abstract configure(config?: object): void;

abstract elaborateResults(output: T[]): void;

● The under-the-hood stuff
Getting video input once pipe is defined
Sample video every sampling_rate frame and provide image to the classify function
Helpers function, like the bootstrap and the teardown of the component

● What does a programmer have to provide?

9

● Sets the GStreamer receiving pipe used by openCV module
i.e. udpsrc port=20010 caps=\"application/x-rtp, media=(string)video,
clock-rate=(int)90000\" ! rtpvp8depay ! vp8dec ! videoconvert ! appsink

● Load here everything you need for elaboration phase
Import a Tensorflow/Caffe model
Import dataset to train your own model
Connect with an external cognitive service
Define custom configurations

The configure method

udp_client = dgram.createSocket('udp4');

pbFile = path.resolve(‘path/to/repo/’, ‘frozen_inference_graph.pb’);

pbtxtFile = path.resolve(‘path/to/repo’, ‘ssd_mobilenet_v2_coco_2018_03_29.pbtxt’);

net = Net.loadFromTensorFlow(pbFile, pbtxtFile);

10

● Receives an array of extended Detection object
Extending the Detection class allows programmers to handle elaboration results,
marshalling the received data

● Sends data to the Janus Streaming Plugin
Detection results could be sent to Streaming Plugin in order to be forwarded to
receivers through datachannels

● No boundaries
Store data
Define a protocol between elaborator and clients to enrich the video they are receiving
Involve external services

The elaborateResults method

11

A lot of things could be done!

We implemented a few examples found online

The classify method

12

Emotion recognition using third party service

13

Use a trained LBPHFaceRecognizer

14

Object Detection loading a Tensorflow model

15

What’s Next?
● Measurements

Provide the capability to evaluate delays introduced by elaboration

● Scalability
Make software ready-to-scale, taking advantages of Docker

● Handle the audio and data media
Implement the necessary tools to treat other media

● Human Intelligence
Improve our knowledge on A.I. and machine learning in order to match as many use
cases as possible

 Icon made by Freepik from www.flaticon.com 16

Fuzzing the
Janus WebRTC Server

And why you should fuzz too
Alessandro Toppi

Software Engineer @ Meetecho
<atoppi@meetecho.com>

The infamous Project Zero’s post
● Natalie Silvanovich’s post series [1] on Google Project Zero blog
● Aiming at RTC services, focusing on End-To-End, RTP testing
● Malicious endpoint generating randomized input
● “fairly time intensive” and “required substantial tooling” [2]

“Our research found a total of 11 bugs in WebRTC, FaceTime and
WhatsApp. The majority of these were found through less than 15 minutes
of mutation […] We were surprised to find remote bugs so easily in code
that is so widely distributed.”

● Is our WebRTC Server safe? [3]

19

[1] https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-1.html
[2] https://github.com/googleprojectzero/Street-Party
[3] https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/

https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-1.html
https://github.com/googleprojectzero/Street-Party
https://webrtchacks.com/lets-get-better-at-fuzzing-in-2019-heres-how/

● Fuzzing is a software testing technique that consists of automatically
submitting unexpected or invalid data to a program and modifying the
input pattern according to a defined strategy
○ Coverage guided mutations

20

● Continuous checking of a Target function, input generated by an Engine
○ At every step, the Engine generates a mutated pattern depending upon

■ The current dataset known as Corpus
○ If new lines of code are covered while executing Target

■ The pattern is added to the Corpus
■ Coverage statistics get updated

○ Target execution is monitored through some tools (e.g. sanitizers)
○ Coverage data are occasionally minimized

Fuzz Testing

Coverage guided fuzzing

Execute
Fuzzing
Target

Evaluate
code

coverage

Update
corpus

Fuzzing
Engine

Minimize

Monitor

21

libFuzzer

● Coverage-guided fuzzing engine [4]
● It is part of LLVM project, need to compile your sources with Clang
● Works in-process and linked with the library under test
● Feeds inputs to the target via a fuzzing entrypoint (target function)

● The execution of the target function is monitored with sanitizers tools
○ AddressSanitizer (ASan) [LLVM /GCC]
○ UndefinedBehaviorSanitizer (UBSan) [LLVM]
○ MemorySanitizer (MSan) [LLVM]

● Openssl, glibc, boringssl, SQLite, ffmpeg ...

22[4] https://llvm.org/docs/LibFuzzer.html

https://llvm.org/docs/LibFuzzer.html

libFuzzer

// api_fuzzer.c

int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

 TargetAPI(Data, Size);

 return 0;

}

● Build using -fsanitize=fuzzer flag
● Combine libFuzzer with ASan and/or UBSan!

> clang -g -O1 -fsanitize=fuzzer,address,undefined api_fuzzer.c

● -fsanitize=fuzzer links in the libFuzzer’s main() symbol

● Prepare a fuzzing target that accepts a bytes array and does
something using the API under test

23

libFuzzer

> ./my_fuzzer CORPUS_DIR

● Coverage incrementing test cases will be added to the corpus
● The fuzzing process will stop when a bug is found
● The input that triggered the bug will be dumped to the disk

> ./my_fuzzer crash-file-dump

● The fuzzer can be re-executed against the offending pattern
● Use to check if a bug has been fixed and for regression testing too!

● Create a Corpus folder holding the initial samples (may be empty)

24

Fuzzing integration in Janus

● The codebase has been checked for compilation with Clang
○ Some compilation flags have been updated to better support Clang
○ Clang generated useful warnings that led to some fixes!

● Started off from RTCP

● Wrote a meaningful fuzzing target (fuzz-rtcp.c)
○ Identify critical functions that handled raw pointers

● Added helper scripts to build (build.sh) and run (run.sh) the fuzzers

● Source [5]

25[5] https://github.com/meetecho/janus-gateway/pull/1492

https://github.com/meetecho/janus-gateway/pull/1492

RTCP fuzzing target
// fuzz-rtcp.c

#include "janus/rtcp.h"

int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {

if (size < 8 || size > 1472) return 0;

if (!janus_is_rtcp(data, size)) return 0;

/* Initialize an empty RTCP context */

janus_rtcp_context ctx;

janus_rtcp_parse(ctx, (char *)data, size);

GSList *list = janus_rtcp_get_nacks((char *)data, size);

...

if (list) g_slist_free(list);

return 0;

} 26

> DEPS_CFLAGS="$(pkg-config --cflags glib-2.0)"

> DEPS_LIB="$(pkg-config --libs glib-2.0)"

> clang $FUZZ_FLAGS $DEPS_CFLAGS fuzz-rtcp.c -o fuzz-rtcp janus-lib.a $DEPS_LIB

Building the target

> FUZZ_FLAGS="-g -O1 -fno-omit-frame-pointer -fsanitize=fuzzer,address ... "

> ./configure CC=clang CFLAGS="$FUZZ_FLAGS"

> make janus-log.o janus-utils.o janus-rtcp.o

> ar rcs janus-lib.a janus-log.o janus-utils.o janus-rtcp.o

● Build needed Janus objects for the fuzzer target

● Collect needed Janus dependencies and build the fuzzer

27

Running the target

● Corpus: reused the webrtc.org RTCP corpus [6]
● Created our own too, with valid WebRTC RTCP packets and invalid

patterns that crashed our server

> ./fuzz-rtcp fuzz-rtcp_corpus

● Reproduce a crash within the debugger

> ASAN_OPTIONS=abort_on_error=1 gdb --args ./fuzz-rtcp crash-file

28[6] https://chromium.googlesource.com/external/webrtc/+/master/test/fuzzers/corpora/rtcp-corpus/

https://chromium.googlesource.com/external/webrtc/+/master/test/fuzzers/corpora/rtcp-corpus/

Meet OSS-Fuzz
● OSS-Fuzz [7] is Google’s infrastructure dedicated to continuous fuzzing

of critical Open Source Software (openssl, ffmpeg … Janus?)
○ Multiple fuzzing engines and sanitizers
○ Issue tracker and dashboard for collecting statistics

● To ask for a project integration you need to submit a PR and provide
○ Dockerfile: prepare the environment (fetch code, install packages)
○ build.sh: build your library and your fuzzing targets
○ project.yaml: your project descriptor

● Janus helper script build.sh
○ Can be seamlessly used for both local and OSS-Fuzz setup
○ Reads all the env vars defined in the OSSF building environment

29[7] https://github.com/google/oss-fuzz

https://github.com/google/oss-fuzz

Results

● Fixed dozens of RTCP parsing bugs in Janus
○ Many of them were memory buffer overflows (DoS, security flaws)
○ Some of the bugs were confirmed in end-to-end testing with a malicious fuzzing browser

● Built useful tools for fuzzing and regression testing
○ Great opportunity to integrate in OSS-Fuzz for continuous fuzzing [8]

● Got in Clang compiler and some LLVM tools

● Contribute to make WebRTC a safer world [9]

30
[8] https://github.com/atoppi/oss-fuzz/tree/janus-gateway
[9] https://github.com/RTC-Cartel/webrtc-fuzzer-corpora

https://github.com/atoppi/oss-fuzz/tree/janus-gateway
https://github.com/RTC-Cartel/webrtc-fuzzer-corpora

What’s next

● Extend to other protocols creating new fuzzing targets
○ RTP, SDP …

● Submit a PR to OSS-Fuzz

● Investigate other fuzzing engines (AFL)

● Integrate the fuzzer building script in Janus GNU Autotools scripts
○ Create a specific target in Makefile for building fuzzers

31
Thank You!

Naples, Italy
September 23 - 25

www.januscon.it

http://www.januscon.it

