
Building Blocks

Rohan Gupta, Red Hat
@rohan47

Jose A. Rivera, Red Hat
@jarrpa

How Raw Block PersistentVolumes Changed the Way
We Look at Storage

WARNING

Introductions and Agenda

Introductions

Rohan Gupta
Associate Software Engineer, Red Hat

● Graduated from college in 2018.
● Did GSoC with CNCF and worked on

adding NFS operator in Rook.
● Working on OpenShift Container Storage

(OCS) focusing on Rook upstream.
● Loves watching anime and riding

motorbikes.

Jose A. Rivera
Senior Software Engineer, Red Hat

● In and around storage for over 10 years.
● Works on OpenShift Container Storage

(OCS), focusing on Rook and Ceph
● Project lead for the OCS Operator.
● Participates in SIG Storage.
● Likes hitting things, mostly drums.

Agenda

0. Introductions and Agenda

1. Setting the Stage
● Storage in Kubernetes
● Raw Block PVs
● Rook and Rook-Ceph

2. Developing the Characters
● OSDs: Then and Now
● Bumps in the Road

3. Putting on a Show
● Demo Time!

← you are here

Setting the Stage

Storage In
Kubernetes

A primer

Storage Resource Types

● PersistentVolumes (PVs)
○ Represents a volume of storage
○ Different backends define what a "volume" represents

● PersistentVolumeClaims (PVCs)
○ Represents a request to use storage

● StorageClasses (SCs)
○ Provides a point PVCs can use for dynamic provisioning of PVs

Dynamic Provisioning

“A request for storage”

Provider: ABC
Capacity: 10 GiB
Features: XYZ

PersistentVolumeClaim

“A provider of storage”

Provider URL: …
Credentials: …
Options: ...

PersistentVolume

“Provisioned Storage”

Name: …
Size: …
AccessMode: ...

APPLICATION POD(S)

“sets up”

“submits” “submitted to” “creates”

Storage Backend

StorageClass

“instructs” “provisions”

“mounted by”

Raw Block PVs
The new kid in town

● Allows Kubernetes to present storage to containers without a
formatted filesystem

● Many applications, like databases (MongoDB, Cassandra),
can leverage block storage directly, with no additional
configuration

● Allows certain storage providers to provide more consistent
I/O performance and lower latency

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#raw-block-volume-support

Why Raw Block PVs?

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#raw-block-volume-support

VolumeMode, a new field, is how you use the feature

● In Beta since Kubernetes 1.13
● Specifies how the storage will be accessed i.e., as a

filesystem or raw block device
● VolumeMode: Block must be set on both the PV and the PVC
● VolumeMode: File is the backwards-compatible default

VolumeMode: File vs Block

VolumeMode: File

apiVersion: v1
kind: PersistentVolume
metadata:
 name: file-pv
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 volumeMode: File ← can omit

 ...

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: file-pvc
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: File ← can omit
 resources:
 requests:
 storage: 10Gi

apiVersion: v1
kind: Pod
metadata:
 name: pod-with-file-volume
spec:
 containers:
 - name: busybox
 image: busybox
 command:
 - sleep
 - "3600"
 volumeMounts:
 - name: data
 mountPath: "/mnt/foo"
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: file-pvc

VolumeMode: Block

apiVersion: v1
kind: PersistentVolume
metadata:
 name: block-pv
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 volumeMode: Block
 ...

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: block-pvc
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Block
 resources:
 requests:
 storage: 10Gi

apiVersion: v1
kind: Pod
metadata:
 name: pod-with-block-volume
spec:
 containers:
 - name: busybox
 image: busybox
 command:
 - sleep
 - "3600"
 volumeDevices:
 - name: data
 devicePath: /dev/vda
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: block-pvc

These are not synonymous nor related

● Access Modes (i.e. RWX, RWO) denote how many Pods may
attach a PVC at a time and whether or not they can write to it

● Certain storage drivers that provide raw block volumes may
only support a subset of the Access Modes their file volumes
provide
○ This is typically a limitation of the storage attachment technology

VolumeMode vs. AccessMode

Rook and
Rook-Ceph

Cloud-native, software-defined
storage

● Storage Operators for Kubernetes
● Automate

○ Deployment
○ Bootstrapping
○ Configuration
○ Upgrading

What is Rook?

● Implement the Operator Pattern for storage solutions
● Define desired state for the storage resource

○ Storage Cluster, Pool, Object Store, etc.
● Reconcile the actual state to match the desired state

○ Watch for changes in desired state
○ Watch for changes in the cluster
○ Apply changes to the cluster to make it match desired state

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

Rook Operators

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

● Ceph in containers
● Resilient, distributed storage

○ Self-healing
● Highly scalable
● Runs on commodity hardware
● Fully open source!

Rook-Ceph

+

Rook-Ceph

MON

MON

MON

 OSD OSD OSD

 OSD

 MGR

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
spec:
 cephVersion:
 image: ceph/ceph:v14
 mon:
 count: 3
 network:
 hostNetwork: false
 storage:
 useAllNodes: true

https://github.com/rook/rook/blob/master/Documentation/ceph-cluster-crd.md

https://github.com/rook/rook/blob/master/Documentation/ceph-cluster-crd.md

Developing the Characters

OSDs:
Then and Now
Presenting devices to Ceph

● Define storage nodes
○ Names, labels, or all

● Define local devices
○ Manual or auto-discover

● Rook automation
○ Prepare devices
○ Start OSD Pod

Local Storage OSDs

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
spec:
 ...
 storage:
 useAllNodes: true
 useAllDevices: true

Pros:

● Easy to configure
● Familiar
● Supports any type of

device/appliance that
Linux supports

Local Storage OSDs

Cons:

● Rely on specialized nodes
● Rigid coupling between

compute and storage

● Define storage nodes
○ Names, labels, or all

● Define desired amount of
storage

● Rook automation
○ Prepare devices
○ Start OSD Pod

StorageClassDeviceSets

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
spec:
 ...
 storage:
 storageClassDeviceSets:
 ...

● SCDSs were designed to be
a generic Rook struct
○ Some features not used in

Rook-Ceph
● name: use for generating

unique and consistent PVC
names

● count: number of devices in
this set

StorageClassDeviceSets

storageClassDeviceSets:
 - name: set1
 count: 3
 portable: true
 volumeClaimTemplates:
 - spec:
 resources:
 requests:
 storage: 10Gi
 storageClassName: gp2
 volumeMode: Block
 accessModes:
 - ReadWriteOnce

● portable: PVCs are allowed
to move between nodes

● volumeClaimTemplates: a
list of PVC templates
○ Just a standard PVC spec
○ Only one is supported for

Rook-Ceph
■ More may be supported for

more advanced features later

StorageClassDeviceSets

storageClassDeviceSets:
 - name: set1
 count: 3
 portable: true
 volumeClaimTemplates:
 - spec:
 resources:
 requests:
 storage: 10Gi
 storageClassName: gp2
 volumeMode: Block
 accessModes:
 - ReadWriteOnce

Pros:

● Offload device distribution
● Device migration between

nodes
● Works with any raw block

PVs, regardless of driver
● Shiny and new 😀

StorageClassDeviceSets

Cons:

● Requires pre-defined
StorageClasses

● Device support limited by
what's in Kubernetes

● Not as simple to configure
● New and different 😒

Bumps in the
Road

Gotchas and caveats

Problem: OSD Pods run as privileged Pods

● Host's /dev is bind-mounted into the container
● Prevents Kubernetes from presenting the block device at the

desired path

Solution: Use a non-privileged init container to copy the device (it's
just a file!) to an emptyDir shared between the init container and
the privileged container (hat tip to John Strunk)

Check Your Privilege

Check Your Privilege

 initContainers:
 - command: ["cp"]
 args: ["-a","/set1-dev0","/mnt/set1-dev0"]
 name: blkdevmapper
 volumeDevices:
 - devicePath: /set1-dev0
 name: set1-dev0
 volumeMounts:
 - mountPath: /mnt
 name: set1-dev0-bridge
 ...
 volumes:
 - name: set1-dev0
 persistentVolumeClaim:
 claimName: set1-dev0
 - emptyDir:
 medium: Memory
 name: set1-dev0-bridge
 ...

apiVersion: v1
kind: Pod
spec:
 ...
 containers:
 - command: ["/rook/tini"]
 args:
 - --
 - /rook/rook
 - ceph
 - osd
 - start
 ...
 name: osd
 volumeMounts:
 - mountPath: /mnt
 name: set1-dev0-bridge
 ...

Problem: When spinning up multiple OSDs on the same node,
some OSDs would be unable to find their storage devices

● Rook-Ceph uses LVM for the OSD devices
● Kubernetes creates a loopback device for the storage device
● Because /dev is mounted, this led to the LVM LV having two PV

references, which confused ceph osd start command

Solution: Pass the exact path to the LV (e.g. /dev/<vg_name>/<lv_name>)
that was used by the OSD prepare Job to the OSD daemon

Virtually Lost

Problem: OSDs were clustering
on few nodes

● Reduces data resiliency
● Potentially increases

volume recovery time

Solution: Use placement
affinities

Proper Distribution

name: set1
count: 3
portable: true
...
placement:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - rook-ceph-osd
 topologyKey: kubernetes.io/hostname

Putting on a Show

Demo Time!
The moment of truth

Thanks!
https://github.com/rook/rook

https://rook.io/

@rohan47 @jarrpa

https://github.com/rook/rook
https://rook.io/

But wait, there's more!

But wait, there's more!
What about on-premises??

Allows Kubernetes to access a
local volume via the PVC/PV
interface.

Create a PV with a reference to
a StorageClass

Specify node affinity

Local Block PVs

apiVersion: v1
kind: PersistentVolume
metadata:
 name: local-block-pv
spec:
 capacity:
 storage: 500Gi
 accessModes:
 - ReadWriteOnce
 volumeMode: Block
 storageClassName: local-storage
 local:
 path: /mnt/disks/vol1
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - my-node

Create a StorageClass that
uses no-provisioner and
topology-aware provisioning,
which will allow the Pod
scheduler to take the locality of
the PV into account.

Create PVC and Pod as normal.

Local Block PVs

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: local-storage
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: local-block-pvc
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Block
 resources:
 requests:
 storage: 500Gi

Thanks, again!
https://github.com/rook/rook

https://rook.io/

@rohan47 @jarrpa

https://github.com/rook/rook
https://rook.io/

