
1/40

Embedded systems, the road to Linux
Exploring boot methods

Angelo Dureghello
angelo.dureghello@timesys.com

Feb 1, 2020

2/40

Why talking again of boot methods

The main idea of this talk session is to provide useful information
related to the early stages of the boot process on some common
Linux-based embedded scenarios.

While Linux kernel boot-related aspects may be more standard and
abstracted from the hardware, previous boot stages are generally
board/CPU-specific and linked with the hardware design.

3/40

Commonly Used Acronyms and Abbreviations

GPMC Generic Purpose Memory Controller
OCRAM On Chip RAM, same as SRAM
RBL ROM BootLoader
SoC System on Chip
SPL Secondary Program Loader
SRAM Static RAM
TPL Tertiary Program Loader
XIP eXecution In Place
SLC Single Level Cell
MLC Multi Level Cell
TLC Triple Level Cell

4/40

Roadmap

I generic boot concepts

I Linux-oriented boot

I ROM bootloader

I bootstrap pins

I boot from different memory types

I boot types

I useful U-Boot commands

I first boot time optimization

I boot troubleshooting

I boot modes - SoC comparison

5/40

Generic boot concepts

I focusing on SoC’s

I they generally have multiple boot options

I ROM bootloader (RBL) comes into play

I where to load the code ? internal SRAM comes into play
I execution chances are

I execution in place (XIP) or ...

I execution of code shadowed to internal SRAM

6/40

Generic boot concepts

I binary read from RBL, if serially read, should have an header
with size

I RBL may miss (NOR flash boot, CS @ address 0, XIP)

I XIP requires random access to the program memory

I RBL is also known as First Program Loader

I first executed code is the Secondary Program Loader (SPL)

I SPL is also known as 1st stage bootloader

I SPL may be followed by a TPL (Tertiary Program Loader)

7/40

Linux-oriented boot

I we are landing on >= 32bit CPU / SoC’s

I kernel loading requires SDRAM/DDR initialized

I appropriate amount of RAM to run the kernel is needed

I a non volatile memory to store kernel/rootfs is needed

I as an additional development boot mode as SD/USB boot is
often mandatory

8/40

Linux-oriented boot

I U-boot as an intermediate step is a common choice

I is similar to Linux kernel as source code organization and
development process, a lot of drivers

I allows DDR setup/training

I kernel parameters selection, boot mode selection

I offers a hush shell, scripting, and lot of commands, filesystems
access and boot from fs

I allows to load separate devicetree, initramfs into ram

I allows system updates

I allows debugging prior to kernel boot

I allows pre-load of any firmware on separate cores

I popular, opensource, maintained, regular relases

9/40

Linux-oriented boot

I so we go from simple systems, booting from NOR XIP, 1st
stage bootloader may be a simple standalone binary

I to recent SoC’s, and ARM TrustZone, there are more
bootlaoder blobs involved and packed together, with headers
and secure boot signatures, etc

I a bootloader may be avoided (merging absolutely necessary
parts to the beginning of Linux kernel) i.e. for boot time
optimizations.

10/40

ROM bootloader
A quite common scenario on 32bit systems

11/40

Bootstrap pins

I to select boot mode, some switches can be used

I or some fixed pull-up/down resistors

I resistors are generally 4k7 or 10k, kohm range

I SoC reads pin values at reset, then pins can be used of other
purposes

12/40

Boot from different memory types

I system architect should define the proper hardware

I is a fast boot time needed ?

I or, is more important keep the cost low ?

Let’s take a tour over the most common boot memories

13/40

Boot from different memory types
SPI NOR

14/40

Boot from different memory types
SPI NOR

I quite common option for booting U-boot

I synchronous, full-duplex

I simple SPI is easy to wire and control (4 wires)

I generally used to provide isolation of U-boot

I it can be simple (MISO/MOSI), dual, quad or octal

I SOIC8 package is simple to de-solder and re-program off-board

15/40

Boot from different memory types
SPI NOR

I transfer rate is type dependent (simple, dual, quad, octal)

I transfer rate is clock dependent, but not only

I transfer rate depends also from time interval between each
data packet

I standard SPI, SOIC8 density up to 256Mbit (32MB), clock up
to 166Mhz

I standard SPI is not random access, but pages can be read and
memory-mapped

I quad and octal can be used for XIP, through specific
commands, where chunks of 4/8/16 bytes can be read and
cached

16/40

Boot from different memory types
Parallel NOR flash, an old new friend

17/40

Boot from different memory types
Parallel NOR flash, an old new friend

I SoC must have proper parallel bus and CS for boot

I from reset, execution in place (XIP)

I similarly to an old CPU, code read/fetched and executed, z80,
8051 etc

I a CS is associated to a certain address range, CPU will boot
from there

I concept of wait states, to be configured on CPU side

I address and data buses, behave as a normal static RAM chip

I random access

I not only XIP, no one forbid to copy code in internal SRAM

I up to 2Gb (512MB)

18/40

Boot from different memory types
Parallel NOR flash - random read

I address is set on address lines

I CS goes low (active low)

I OE goes low (active low)

I after configured wait state (delay) data is available on data
lines

I CS and OE comes back high (inactive)

I whole cycle may take 70 to 120ns

I throughput is 1/100 ns * (16/8) = 20 MB/s, not very
impressive

I smaller density are faster

19/40

Boot from different memory types
Parallel NOR flash - improving speed

I page mode (can be configured from U-boot)

I must map the NOR memory region as cachable

I address is set on address lines

I CS and OE are set low

I after first read delay (about 100 ns), first word is available on
data lines

I CS and OE remain low, CPU increments only the address

I * next word is available in 10 / 20 ns

I after reading 4, 8 or 16 words in this manner, OE and CS
return high

I speed is 1/(100 ns + 7 * 15 ns) * 8 * (16/8) = 78 MB/s

20/40

Boot from different memory types
NAND

21/40

Boot from different memory types
NAND

I NAND flash devices use a multiplexed address and data bus

I asynchronous, CLE and ALE for command / address / data
cycle

I NAND chips are block based (versus truly random access)

I RBL caches blocks to static RAM

I faster on write/erase compared to NOR

I SLC, MLC, eMLC, TLC, QLC, 3D NAND etc

I boot sectors generally guaranteed to be better than the rest of
the chip

I but known to be error prone (needs sw ECC mechanism)

I density ranges between 1Gb to 16Gb (2GB)

I read performance more or less around 50 MB/s, write speed
faster than NOR

22/40

Boot from different memory types
NAND

23/40

Boot from different memory types
eMMC

I NAND based with a complex hw front-end inside

I protocol similar to SDIO, reliable, low power

I vast majority is 8 bit data bus

I no need to care about error correction

I usage similar to SD, so engineers like eMMC

I fewer lines than parallel NOR or NAND, attractive, so leave
free pins for other purposes

I MMC 5.1 up to 400MB/sec with DDR and 8 data lines

I but, >= 50ms of initialization time

I SoC can boot from eMMC shadowing to RAM, block based,
no direct execution possbile

24/40

Boot from different memory types
SD

I generally used for development

I as per eMMC, has internal circuit, a startup time is needed,
up to 250ms may be needed

I in many SoC’s, RBL can boot initial fw blob directly from SD

25/40

Boot from different memory types
Other technologies

I OneNAND

I UFS chips / cards, up to 3 GB/s, 50ms init time

I Semper Flash (Octal Interface)

I ...

26/40

Boot types

27/40

Boot types

28/40

Boot types

29/40

Boot types
Special case, IMX

30/40

Boot types
ARM TrustZone - secure world

I some recent SoC starts in ”secure world”

I ARM specification, but different implementations

I there may be a ”system manager” additional core

I several boot stages (bl1, bl2, bl31) and bl33

I you may find propertary blobs (imx8qm, etc)

https://github.com/ARM-software/arm-trusted-firmware

https://github.com/ARM-software/arm-trusted-firmware/tree/master/docs/plat

https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware/tree/master/docs/plat

31/40

Some useful U-Boot commands
General stuff

u-boot fdt info

U-Boot > dm tree

mmc load, fs listing, writing

U-Boot > mmc dev 0:1

U-Boot > ls mmc 0:1

U-Boot > load mmc 0:2 ${loadaddr} /boot/uImage

4856776 bytes read in 352 ms (13.2 MiB/s)

U-Boot > ls mmc 0:2 /boot

<DIR> 4096 .

<DIR> 4096 ..

<SYM> 63 uImage

47312 imx6q-hello.dtb

U-Boot > size mmc 0:2 boot/uImage

U-Boot > echo ${filesize}

4a1bc8

commands for memory display (all memory access commands as md mw mm cmp are built-in)

U-Boot > md.b 0x20C4000 4

020c4000: ff 10 01 04

U-Boot > md.l 0x20C4000 1

020c4000: 040110ff

writing otp eFuses (program once)

U-Boot > help fuse

U-Boot > fuse read 0 5

Reading bank 0:

Word 0x00000005: 18000030

32/40

Some useful U-Boot commands
BMODE, reboot from device (imx)

CONFIG CMD BMODE=y in configs/yourboard config

U-Boot > help bmode

acting on imx SRC GPR9, SRC GPR10 (0x20d8040, 0x20d8044)

=> bmode

bmode - mmc0|mmc1|normal|usb|sata|ecspi1:0|ecspi1:1|ecspi1:2|ecspi1:3|esdhc1|esdhc2|esdhc3 [noreset]

reboot from serial downloader (usb)

=> bmode usb

resetting ...

if bmode command is not available, boot mode switches not accessible, how to reboot from usb serial downloader ?
BOOTCFG values can be applied in reserved register SRC GPR9

mw.l 0x20d8040 0xd860; md.l 0x20d8040 1; mw.l 0x20d8044 0x10000000; reset

33/40

Some useful U-Boot commands
GPIO, enable some stage

CONFIG CMD GPIO=y in configs/yourboard config

U-Boot > help gpio

controlling gpios

U-Boot > gpio clear 86

gpio: pin 86 (gpio 86) value is 0

U-Boot > gpio set 86

gpio: pin 86 (gpio 86) value is 1

U-Boot > gpio toggle 86

gpio: pin 86 (gpio 86) value is 0

U-Boot > gpio input 86

gpio: pin 86 (gpio 86) value is 1

U-Boot > gpio status

Bank GPIO1_:

GPIO1_5: input: 1 [x] i2c_scl2

GPIO1_27: output: 0 [x] rgmii_reset_nitrogen6x

Bank GPIO2_:

GPIO2_1: input: 1 [x] menu

GPIO2_2: input: 1 [x] back

GPIO2_3: input: 1 [x] search

GPIO2_4: input: 1 [x] home

...

but how to determine gpio number ?
Each SoC constructor has a proper encoding. I.e., for imx6, 32 bit ports, (GPIO PORT - 1) * 32 + gpio number

34/40

Some useful U-Boot commands
Reprogram SPI NOR Flash

CONFIG CMD SF=y in configs/yourboard config

U-Boot > sf help

SPI NOR detection

U-Boot > sf probe

SF: Detected w25q32bv with page size 256 Bytes, erase size 64 KiB, total 4 MiB

Not detectetd ? Check CONFIG SPI *CONSTRUCTOR* to your
include/configs/your board.h

SPL U-Boot update (on imx6), load file through same console, block aligned erase, write
(providing file by a ymodem terminal)

U-Boot > loady 0x12000000

Ready for binary (ymodem) download to 0x12000000 at 115200 bps...

CCCCCC

File: /home/angelo/dev-timesys/u-boot-fslc/SPL

Size: 52224 bytes.

Starting file transfert ...

Transfer start, protocol y-modem, crc is on, block size is 1024

Sync received

53248/52224

Closing session ...

U-Boot > sf erase 0x0 0x10000

SF: 65536 bytes @ 0x0 Erased: OK

U-Boot > sf write 0x12000000 0x400 0xfc00

SF: 64512 bytes @ 0x400 Written: OK

Error ? Check block alignment and block size.

35/40

Some useful U-Boot commands
Boot commands

old, monolithic

U-Boot > go ${loadaddr}

bootm takes 3 arguments, kernel uImage + initramfs + devicetree

U-Boot > bootm ${loadaddr} ${loadaddr_ramfs}

Booting kernel from Legacy Image at 40001000 ...

Image Name: mainline kernel

Created: 2020-01-10 12:52:01 UTC

Image Type: M68K Linux Kernel Image (uncompressed)

kernel zImage + fdt, no initramfs

U-Boot > bootz ${loadaddr} - ${fdt_addr_r}

FIT images, group of blobs previously declared in a devicetree-like file (its)
mkimage -f fitimage.its fitImage

U-Boot > load mmc 0:1 ${loadaddr} fitimage

U-Boot > iminfo

U-Boot > bootm

36/40

First boot time optimization
Some optimization tips

I a good result starts from the hardware choice, so

I boot time experts should be consulted before new hardware or
software is introduced to the project

I two memory types worth considering: NOR and NAND

I check U-boot and boot device drivers, be sure to have the
maximum speed setup enabled

I disable console, U-boot countdown

I check clock signals by oscilloscope, to be sure the running
speed is correct

I measure boot time from reset through gpios and oscilloscope

I then comes kernel boot time optimization, but this is another
story

37/40

First boot
Troubleshooting, custom board/prototype, no boot, nothing on console

I check proper and stable power supply of involved devices
(multimeter, oscilloscope)

I check proper reset signals and reset timings sequence for all
involved devices (oscilloscope)

I check CPU clock (oscilloscope), often possible

I check if any activity on first boot device (clock and data lines)

I have a look at the schematic diagram, check proper
connections (swapped / wrong connections)

I if there is activity, and data seems loaded from RBL, check
header and boot device data content (reprogram)

I start to add some gpio toggling in the code to debug

38/40

Boot modes - SoC comparison

Table: Boot options

bootstrap SRAM Boot options
ARM926EJ-S SYSCFG 128K NOR/XIP, NAND, SPI NOR, eMMC/SD, USB
Allwinner H3 UBOOT pin/FEL 32K SPI NOR, NAND, eMMC/SD, USB
am335x SYSBOOT[11:0] 63K NOR/XIP, NAND(I2C)(1), MMC/SD, SPI, USB, EMAC

imx6Solo
BOOT MODE[1:0]
BOOT CFG1[7:4]

128K NOR/XIP, NAND, MMC/eMMC/SD, SATA

imx6DQ
BOOT MODE[1:0]
BOOT CFG1[7:0]

256K NOR/XIP, NAND, MMC/eMMC/SD, SATA, i2c, SPI

Zynq-7000 MIO[8:2] 256K NOR/XIP, NAND, Quad-SPI/XIP, SD, JTAG
TI DRA7xx SYSBOOT[5:0] 512K NOR/XIP, NAND, SPI/QSPI, eMMC/SD, SATA, USB
imx8QM BOOT MODE[5:0] 256K(2) eMMC/SD, NAND, FlexSPI, SATA, USB
BCM2837 GPIO BANK1/2 512K(3) SD, NAND, SPI, USB

(1) ROM bootloader tries to read NAND geometry from i2c eeprom

(2) TCM

(3) L2 cache

39/40

QUESTIONS

40/40

THANK YOU

