
Checkpointing in a real time OS

David Garriou

February 1, 2020



Plan

1 Introduction

2 Context of the project

3 Energy estimation and prediction

4 Trampoline RTOS

5 Transcient computing platform



Many Thanks to

Smile

1800 geeks

European expert in open source solutions

www.smile.eu
Smile did fund a part of the work

LS2N – UMR CNRS 6004 (French National Centre for Scienti�c

Research)

École Centrale de Nantes, IMT Atlantique, Université de Nantes

www.ls2n.fr
Special thanks to my friends and former colleagues, Jean-Luc

Béchennec, Mikaël Briday, Sébastien Faucou

www.smile.eu
www.ls2n.fr


Plan

1 Introduction

2 Context of the project

3 Energy estimation and prediction

4 Trampoline RTOS

5 Transcient computing platform



The context

Some facts

So many connected objects in the coming years

So much raw data sent to the cloud

Too much data will be stored in the cloud

Our motivation

Decreasing the environmental impact of IoT

Decreasing the maintenance cost of IoT

Our Goal

Avoid transmission of raw data

Provide a platform for usual sensing, transmission, “heavy” computing

Have fun of course !



Targeted Systems

Constrained embedded devices

Application over an operating system

Batteryless devices, so we need hypothesis :

Some non volatile RAM (NVRAM)

A supercapacitor



Targeted Systems

Resources (CPU, ROM, RAM)

A
p
p
lic
at
io
n
co

m
p
le
xi
ty

Bare metal

systems

RTOS based

systems

Linux based

systems

Targeted

systems



Plan

1 Introduction

2 Context of the project

3 Energy estimation and prediction

4 Trampoline RTOS

5 Transcient computing platform



Real time energy estimation

System equipped with a supercapacitor

Available energy in the capacitor stated with a relation on voltage

Available energy depends on operating mode, clocked peripherals,

microcontroller operations, etc.

Estimate the operating time (the time before a checkpoint shall be

done)

May be predicted using a linear model

Estimate a global slope (from di�erent modules’ slope)

Adjust the slopes dynamically at runtime



Remaining energy prediction

By using the current voltage, Vc and the voltage drop slope over time,

it is possible to predict when a checkpoint execution is required (When

the voltage will cross Vcp).

A timer is programmed so that an interruption (cpint) occurs at this time.

In addition, the exact voltage is read periodically to adjust the

prediction. This can lead to a reprogramming of the timer.



Operating time prediction

Vmax Maximum voltage of the supercapacitor

Vcp Voltage at which a checkpointing shall be done

Vmin Minimum voltage at which the microcontroller runs

behavior

prediction

Time

Voltage

Vmin

Vmax

Vcp

S
ys
te
m

is

sw
itc
h
e
d
o
�

S
ys
te
m

is

in
o
p
e
ra
tio

n

System is in low voltage

0 2 4 6 8



Operating time prediction

Vmax Maximum voltage of the supercapacitor

Vcp Voltage at which a checkpointing shall be done

Vmin Minimum voltage at which the microcontroller runs

behavior

prediction

Time

Voltage

Vmin

Vmax

Vcp

S
ys
te
m

is

sw
itc
h
e
d
o
�

S
ys
te
m

is

in
o
p
e
ra
tio

n

System is in low voltage

0 2 4 6 8
cpint



Operating time prediction

Vmax Maximum voltage of the supercapacitor

Vcp Voltage at which a checkpointing shall be done

Vmin Minimum voltage at which the microcontroller runs

behavior

prediction

Time

Voltage

Vmin

Vmax

Vcp

S
ys
te
m

is

sw
itc
h
e
d
o
�

S
ys
te
m

is

in
o
p
e
ra
tio

n

System is in low voltage

0 2 4 6 8
cpint cpint



Operating time prediction

Vmax Maximum voltage of the supercapacitor

Vcp Voltage at which a checkpointing shall be done

Vmin Minimum voltage at which the microcontroller runs

behavior

prediction

Time

Voltage

Vmin

Vmax

Vcp

S
ys
te
m

is

sw
itc
h
e
d
o
�

S
ys
te
m

is

in
o
p
e
ra
tio

n

System is in low voltage

0 2 4 6 8
cpint cpint cpint



Operating time prediction

Vmax Maximum voltage of the supercapacitor

Vcp Voltage at which a checkpointing shall be done

Vmin Minimum voltage at which the microcontroller runs

behavior

prediction

Time

Voltage

Vmin

Vmax

Vcp

S
ys
te
m

is

sw
itc
h
e
d
o
�

S
ys
te
m

is

in
o
p
e
ra
tio

n

System is in low voltage

0 2 4 6 8
cpint cpint cpintcpint



Operating time prediction

Vmax Maximum voltage of the supercapacitor

Vcp Voltage at which a checkpointing shall be done

Vmin Minimum voltage at which the microcontroller runs

behavior

prediction

Time

Voltage

Vmin

Vmax

Vcp

S
ys
te
m

is

sw
itc
h
e
d
o
�

S
ys
te
m

is

in
o
p
e
ra
tio

n

System is in low voltage

0 2 4 6 8
cpint cpint cpintcpintcpint



Plan

1 Introduction

2 Context of the project

3 Energy estimation and prediction

4 Trampoline RTOS

5 Transcient computing platform



Trampoline

Real-time Operating System, developed by the LS2N Real-time

Systems Group

Modular and portable

Free Software License (GPLv2) + industrialized version

Conforms to OSEK/VDX OS and AUTOSAR OS (�xed priority

scheduling)

Many targets including AVR, ARM-Cortex, PowerPC, Posix, MSP430

Support for multicore architectures



Insights

Contributors 13 identi�ed, but 4 in reality; Jean-Luc Béchennec, Mikaël

Briday, Sébastien Faucou, David Garriou

Commits > 2600
Organization No organization ! But I hope things will evolve

First Trampoline sprint (à la Buildroot) on march.

A lot of subjets to deal with; new features, build system, code

generation, legacy code, documentation

As far as we know, used in industrial environment by two major

undertaking



History

Version 1

2005: Start of development

2007: AUTOSAR

2008: Pass OSEK certi�cation, AUTOSAR SC1&2

2009: Integrated trace system

2010: AUTOSAR SC3&4, MODISTARC & AUTOSAR test suite

Version 2

2013: Runtime Veri�cation

2014: Multicore

Version 3

2016: Hypervisor support (XVisor)

2017: Runtime enforcement

2018: Runtime veri�cation on FPGA



Scheduling

Fixed priority scheduling

Basic task : may not

synchronize

Extended task : may

synchronize

Critical sections use the

ICPP protocol (no

deadlock no priority

inversion)

Each task can be

con�gured ad

preemptable or

non-preemptable

susp.

ready running

waiting

activate terminate

blockrelease

preempt

start



Trampoline is a static system

The con�guration of Trampoline uses a dedicated language

OIL or arXML

extensible (based on a template engine)

Kernel C

sources

BSP: C & as-

sembly sources

System con�gu-

ration Templates

OIL/arXML de-

scription of

the application

Application sources

(C/C++)

static struc-

ture + code

(C sources)

OIL compiler

GOIL v3
C compiler

+ linker

Executable

(binary)



Example of OIL description (excerpt)

ALARM one_second {

COUNTER = SystemCounter;

ACTION = ACTIVATETASK { TASK = t0; };

AUTOSTART = TRUE { APPMODE = std; ALARMTIME = 100; CYCLETIME = 100; };

};

TASK t0 {

AUTOSTART = FALSE;

PRIORITY = 3;

ACTIVATION = 1;

SCHEDULE = FULL;

MESSAGE = s00;

};

MESSAGE s00 {

MESSAGEPROPERTY = SEND_STATIC_INTERNAL {

CDATATYPE = "uint8";

};

NOTIFICATION = NONE;

};



Architecture

OS

services

Task

services

Interrupt

services

Alarm

services

Resource

services

Event

services

ISR

services

Schedule

Table services

Counter

services

Global Time

services

Application

services

Spinlock

services

IOC

services

Kernel
Task manager

Counter manager Timing protection Scheduler

BSP

System call handler
External interrupt

handler

Context switch

manager

Memory protection

manager



Some services

Service Prototype Description

OS services

StartOS app_mode Starts the operating system

ShutdownOS app_mode Stops the operating system

Task services

ActivateTask task_id Activates task task_id

TerminateTask Terminates the caller

Alarm services

SetRelAlarm alarm_id, o�set, cycle) Starts alarm alarm_id

SetAbsAlarm alarm_id, date, cycle) Starts alarm alarm_id

CancelAlarm alarm_id tops alarm alarm_id

GetAlarm alarm_id, &remaining) Gets alarm state

Resource services

GetResource rez_id The caller enters critical section

ReleaseResource rez_id The caller leaves critical section

Event services

WaitEvent ev The caller waits for event ev

SetEvent task_id, ev Set event ev to task task_id

ClearEvent ev Clear event ev of the caller

GetEvent task_id, &ev Puts a copy of events received by task task_id in ev



Plan

1 Introduction

2 Context of the project

3 Energy estimation and prediction

4 Trampoline RTOS

5 Transcient computing platform



Transcient computing platform with MSP430

Port of MSP430 to Trampoline

Two boards; MSP430FR5969, MSP430FR5994 Launchpads

Still in progress, not completely tested

We need to better integrate it in Trampoline (e.g. templates)

New services

Service Prototype Description

OS services

RestartOS Starts the operating system from a checkpoint

Hibernate Terminates the current task and records a checkpoint in an available FRAM slot



(MSP/EXP)430FR5994

16 bits micro-controller

16 registers 20 bits wide (CPUX)

16MHz

4kB + 4kB SRAM

512B + 256kB FRAM

118µA/MHz active mode, Peripheral low-frequency (LPM3)

0.22F supercapacitor. Works x minutes with blink.



(MSP/EXP)430FR5994



MSP430FR5994 memory mapping

Reserved10B

Tiny RAM22B

Peripherals4kB

Device descriptor (TLV) (FRAM)512B

Bootloader (BSL) Memory (ROM)2kB

Information memory FRAM2kB

RAM4kB

RAM4kB

FRAM256kB

data

system stack

checkpoint bu�er

slot 0

slot 1



Status of work

Energy

Remaining energy prediction strategy not implemented

We periodically read the voltage

Commit a checkpoint if voltage value is below a threshold

Checkpoints

Two checkpoint slots, a mark selects the available checkpoint slot

Copy a part of RAM to a slot in FRAM

Exclude the system stack

Restart

When energy comes back

Get back from FRAM the last committed checkpoint



Future work

Implement the strategy for operating time estimation, dynamically

adjust the slopes

Do not store unnecessary data, higher level RAM management

Restore the state of some peripherals

Thinking with the “normally o�, instantly on” paradigm

Integrate this paradigm in the con�guration of Trampoline.

Checkpointing some tasks, not all

A task may specify the energy it would need to surely complete, a kind

of worst case execution energy, the Worst Case Voltage Drop.



References

Trampoline https://github.com/TrampolineRTOS/trampoline
Work Work in progress on branch checkpointing

Documentation Available on checkpointing branch,

documentation/manual/msp430/

https://github.com/TrampolineRTOS/trampoline

	Introduction
	Context of the project
	Energy estimation and prediction
	Trampoline RTOS
	Transcient computing platform

