Checkpointing in a real time OS

David Garriou

February 1, 2020

ASMIEE

Introduction

Many Thanks to 5

= Smile
1800 geeks
European expert in open source solutions
www.smile.eu
Smile did fund a part of the work

= LS2N - UMR CNRS 6004 (French National Centre for Scientific
Research)
Ecole Centrale de Nantes, IMT Atlantique, Université de Nantes
www.ls2n.fr
Special thanks to my friends and former colleagues, Jean-Luc
Béchennec, Mikaél Briday, Sebastien Faucou

www.smile.eu
www.ls2n.fr

Context of the project

The context 5

= So many connected objects in the coming years

= So much raw data sent to the cloud

= Too much data will be stored in the cloud

m Decreasing the environmental impact of loT

m Decreasing the maintenance cost of loT

= Avoid transmission of raw data
= Provide a platform for usual sensing, transmission, “heavy" computing

= Have fun of course !

Targeted Systems 5

m Constrained embedded devices

= Application over an operating system
= Batteryless devices, so we need hypothesis :

m Some non volatile RAM (NVRAM)
= A supercapacitor

Targeted Systems 5

Targeted
systems

\
4

Application complexity

RTOS based
systems

\
4

Resources (CPU, ROM, RAM)

Energy estimation and prediction

Real time energy estimation 5

m System equipped with a supercapacitor
= Available energy in the capacitor stated with a relation on voltage

= Available energy depends on operating mode, clocked peripherals,
microcontroller operations, etc.

m Estimate the operating time (the time before a checkpoint shall be
done)

= May be predicted using a linear model
= Estimate a global slope (from different modules' slope)

= Adjust the slopes dynamically at runtime

Remaining energy prediction S

= By using the current voltage, V. and the voltage drop slope over time,
it is possible to predict when a checkpoint execution is required (When
the voltage will cross V).

m Atimer is programmed so that an interruption (cp;jn) occurs at this time.

= In addition, the exact voltage is read periodically to adjust the
prediction. This can lead to a reprogramming of the timer.

Operating time prediction

Vimin Minimum voltage at which the microcontroller runs
~ Vimax Maximum voltage of the supercapacitor
Vo ltage Vep Voltage at which a checkpointing shall be done

behavior
prediction

Vm ax

Systemis
in operation

<
3
Qf — — — — — —

. System isiin low voltage |

Vmin

System is
switched off

Q0 o

Time

NAolooooooony
[0) I s

N e

Operating time prediction

Vimin Minimum voltage at which the microcontroller runs
~ Vimax Maximum voltage of the supercapacitor
Vo ltage Vep Voltage at which a checkpointing shall be done

behavior

prediction

Vm ax

Systemis
in operation

-}

1
~Systemisinlow voltage Ty T T E IRRRREN T —
Vo 1 1 1 1
min 1 1 1 1
1 1 1 1
1 1 1 1 05
1 1 1 1 PAER
1 1 1 1 E %’
1 1 1 1 Q. 2
N 1 1 1 1 %
1 1 1 1
5 1 1 1 1
1 1 1 1
T T T T T X ’
0 2 4 6 g [ime

CPint

Operating time prediction

Vimin Minimum voltage at which the microcontroller runs
~ Vimax Maximum voltage of the supercapacitor
Vo ltage Vep Voltage at which a checkpointing shall be done

behavior

prediction

Vimax :
I
I
I

Systemis
in operation

1
~ Systemisinlowvoltage Ty Ty N IRRRREN T —
Vo 1 1 1 . 1
min 1 1 1 : 1
1 1 1 : 1
1 1 1 . 1 05
1 1 1 : 1 e
1 1 1 1 E %’
1 1 1 1 Q. 2
1 1 1 2%
1 1 1
1 1 1
| | . 1
T T T T X 7
0 2 4 6 g [ime

Operating time prediction

Vimin Minimum voltage at which the microcontroller runs
Vimax Maximum voltage of the supercapacitor

,\VO ltage Vep Voltage at which a checkpointing shall be done
behavior
prediction
Vimax L ! ! !
1 ! 1 1 .
1 1 1 | 2 5
| | | | g g
! ! ! N
1 1 1 1 " c
1 1 1
VCP 1 1 1)
~ System isin low voltage Jriisaitisaamiaaan Yarisisiiisisaias Sigiaaaan T —
Vo 1 1 1 IR
min ! . . .
1 1 1 T
1 1 ! T 05
1 1 1 | 2
1 1 1 T E E’
1 1 1 28] .8
| | T %
1 1 B
1 1 s
1 1 D
T T T T Ti 4
0 2 4 6 8 ime

Operating time prediction

Vimin Minimum voltage at which the microcontroller runs
Vimax Maximum voltage of the supercapacitor

Vo ltage Vep Voltage at which a checkpointing shall be done
behavior
prediction

Vimax L ! ! :
1 ! 1 1 .
1 1 | | 2 5
| | 1 1 §¢
! ' . 1%
1 1 1 1 " c
1 1 1

VCP 1 1 1

e System isin {owvouage \\\\\\\\\\\\\\\\\ Y3 raaavaaasiiaan s Jrarraaa v A Ay Jracsaaaaoe
. 1 1 1 T

Vimin ! . . o
1 1 1 1
1 1 ! 1 05
1 1 1 1 2.3
' | | 1 52
1 1 1 I 2.2
1 1 1 a3
| 1 L
1 I 1
1 | 10
T T T [Ti 4

0 2 4 6 8 ime

CPint

Operating time prediction

Vimin Minimum voltage at which the microcontroller runs
~ Vimax Maximum voltage of the supercapacitor
Vo ltage Vep Voltage at which a checkpointing shall be done

behavior
prediction

Vm ax

Systemis
in operation

<
3
Q@b = = = ==

~ System isin low voltage - T Ty T Ty T Ty T e

System is
switched off

8 Time
CPint

@)

N faidililililiilililil
N faililili il
Oy faiaililili i liliilil

Trampoline RTOS

Trampoline 5

= Real-time Operating System, developed by the LS2N Real-time
Systems Group

= Modular and portable
m Free Software License (GPLv?2) + industrialized version

m Conforms to OSEK/VDX OS and AUTOSAR OS (fixed priority
scheduling)

= Many targets including AVR, ARM-Cortex, PowerPC, Posix, MSP430

m Support for multicore architectures

Insights 5

Contributors 13 identified, but 4 in reality; Jean-Luc Béchennec, Mikaél
Briday, Sebastien Faucou, David Garriou
Commits > 2600
Organization No organization ! But | hope things will evolve
m First Trampoline sprint (a la Buildroot) on march.
= A lot of subjets to deal with; new features, build system, code
generation, legacy code, documentation
m As far as we know, used in industrial environment by two major
undertaking

= Versionl
m 2005: Start of development
m 2007 AUTOSAR
m 2008: Pass OSEK certification, AUTOSAR SC1&2
= 2009: Integrated trace system
m 2010: AUTOSAR SC3&4, MODISTARC & AUTOSAR test suite
= Version 2
= 2013: Runtime Verification
= 2014: Multicore
= Version 3
m 2016: Hypervisor support (XVisor)
= 2017: Runtime enforcement
m 2018: Runtime verification on FPGA

Scheduling 5

m Fixed priority scheduling

= Basic task : may not

synchronize

terminate

m Extended task : may activate

synchronize

m Critical sections use the
ICPP protocol (no
deadlock no priority
inversion)

preempt

= Each task can be release block
configured ad
preemptable or

non-preemptable

Trampoline is a static system

The configuration of Trampoline uses a dedicated language
m OIL or arXML

m extensible (based on a template engine)

System configu- Kernel C BSP: C & as-

ration Templates sources sembly sources

I
I
I
I
I
~ i

OlL/arXML de-

static struc-

scription of -——= Olléé:):\[;ler ture + code
the application v (C sources) C compiler
+ linker
T
|
_ |
- ¥
Application sources Executable

(C/C+) (binary)

Example of OIL description (excerpt)

ALARM one_second {

COUNTER = SystemCounter,;

ACTION = ACTIVATETASK [TASK = tO; I;

AUTOSTART = TRUE { APPMODE - std; ALARMTIME = 100; CYCLETIME = 100; I;
I§

TASK 1O {
AUTOSTART = FALSE;
PRIORITY = 3;
ACTIVATION = 1;
SCHEDULE = FULL;
MESSAGE = sOO;

MESSAGE s00 {
MESSAGEPROPERTY = SEND_STATIC_INTERNAL {
CDATATYPE = "uint8";
L
NOTIFICATION = NONE;
L

Architecture

3 Task Interrupt Aarm | [Resource | [Event 1SR Schedule Counter | [Global Time Application | [spintock 1oc
services || sewvices || services || sewvices || services || services || services || Table services || services services services services | | services
Kernel
Task manager
| Counter manager | | Timing protection | | Scheduler |
N

|
BSP

i Context switch Memory protection

External interrupt System call handler ry p
handler manager manager

Some services

Service Prototype Description

OS services

StartOS app_mode Starts the operating system
ShutdownOS app-mode Stops the operating system
Task services

ActivateTask task_id Activates task task_id

TerminateTask

Terminates the caller

Alarm services

SetRelAlarm alarm_id, offset, cycle) Starts alarm alarm_id
SetAbsAlarm alarm_id, date, cycle) Starts alarm alarm_id
CancelAlarm alarm_id tops alarm alarm_id

GetAlarm alarm_id, &remaining) Gets alarm state

Resource services

GetResource rez_id The caller enters critical section
ReleaseResource rez_id The caller leaves critical section
Event services

WaitEvent ev The caller waits for event ev
SetEvent task_id, ev Set event ev to task task_id
ClearEvent ev Clear event ev of the caller
GetEvent task_id, &ev Puts a copy of events received by task task_id in ev

Transcient computing platform

Transcient computing platform with MSP430 5

Port of MSP430 to Trampoline

= Two boards; MSP430FR5969, MSP430FR5994 Launchpads

m Stillin progress, not completely tested

= We need to better integrate it in Trampoline (e.g. templates)

New services

Service Prototype Description
OS services
RestartOS Starts the operating system from a checkpoint

Hibernate Terminates the current task and records a checkpoint in an available FRAM slot

(MSP/EXP)430FR5994

m 16 bits micro-controller

m 16 registers 20 bits wide (CPUX)

m 16MHz

m 4kB + 4kB SRAM

m 512B + 256kB FRAM

m 118uA / MHz active mode, Peripheral low-frequency (LPM3)

= 0.22F supercapacitor. Works x minutes with blink.

MSP430FR5994 memory mapping

03050555303355553950355353350 Y
10000000000000005005007505007
20000000020525520022522522577
7000000500000500500700000707 0 Gt
20000000020520520022522522577
20000000000500505002002502007
s
256kB. FRAM
550 =+ <] checkpoint buffer
@ RAM
system stack
k8 RAM
28 Information memory FRAM
e Bootloader (BSL) Memory (ROM)
5128 Device descriptor (TLV) (FRAM)
e Peripherals
228 Tiny RAM
108 Reserved

Status of work 5

= Remaining energy prediction strategy not implemented
= We periodically read the voltage

= Commit a checkpoint if voltage value is below a threshold

Checkpoints

= Two checkpoint slots, a mark selects the available checkpoint slot
= Copy a part of RAM to a slot in FRAM

m Exclude the system stack

= When energy comes back

m Get back from FRAM the last committed checkpoint

Future work 5

= Implement the strategy for operating time estimation, dynamically
adjust the slopes

= Do not store unnecessary data, higher level RAM management

= Restore the state of some peripherals

= Thinking with the "normally off, instantly on" paradigm

= Integrate this paradigm in the configuration of Trampoline.

= Checkpointing some tasks, not all
m A task may specify the energy it would need to surely complete, a kind
of worst case execution energy, the Worst Case Voltage Drop.

Trampoline https://github.com/TrampolineRT0S/trampoline
Work Work in progress on branch checkpointing
Documentation Available on checkpointing branch,
documentation/manual/msp430/

https://github.com/TrampolineRTOS/trampoline

	Introduction
	Context of the project
	Energy estimation and prediction
	Trampoline RTOS
	Transcient computing platform

