
rav1e 0.3.0
Luca Barbato

Intro

Who am I?

○ Luca Barbato
● rav1e and dav1d contributor among many other open source

software.
● Contacts

○ lu_zero@gentoo.org / lu_zero@videolan.org

○ https://twitter.com/lu_zero_

○ https://github.com/lu-zero

2

mailto:lu_zero@gentoo.org
mailto:lu_zero@videolan.org

Intro

○ Who are you?
■ I will talk a little about AV1

3

Intro

○ Who are you?
■ I will talk a little about AV1
■ I will talk a lot about rav1e

4

Intro

○ Who are you?
■ I will talk a little about AV1
■ I will talk a lot about rav1e

● I will mention Rust a couple of times, without being too preachy

5

Intro

○ Who are you?
■ I will talk a little about AV1
■ I will talk a lot about rav1e

● I will mention Rust a couple of times, without being too preachy

● I will talk about Memory and Performance Profiling on Linux

6

Intro

○ Who are you?
■ I will talk a little about AV1
■ I will talk a lot about rav1e

● I will mention Rust a couple of times, without being too preachy

● I will talk about Memory and Performance Profiling on Linux
● I will not dive too deep in details about encoding features.

7

Intro

○ Who are you?
■ I will talk a little about AV1
■ I will talk a lot about rav1e

● I will mention Rust a couple of times, without being too preachy

● I will talk about Memory and Performance Profiling on Linux
● I will not dive too deep in details about encoding features.
● I’ll give you the roadmap for the next months

8

Intro

○ Who are you?
■ I will talk a little about AV1
■ I will talk a lot about rav1e

● I will mention Rust a couple of times, without being too preachy

● I will talk about Memory and Performance Profiling on Linux
● I will not dive too deep in details about encoding features.
● I’ll give you the roadmap for the next months

■ You are welcome to interrupt me and ask questions
● I will try to answer to them immediately

9

Intro

○ Who are you?
■ I will talk a little about AV1
■ I will talk a lot about rav1e

● I will mention Rust a couple of times, without being too preachy

● I will talk about Memory and Performance Profiling on Linux
● I will not dive too deep in details about encoding features.
● I’ll give you the roadmap for the next months

■ You are welcome to interrupt me and ask questions
● I will try to answer to them immediately

I hope you’ll have fun (or at least find the whole thing bearable).

10

What is rav1e?

rav1e is an AV1 encoder

○ rav1e is written in Rust
■ With a fair amount of arch-specific assembly for x86_64 (and aarch64)

○ rav1e can be used as a command line tool
■ cargo install rav1e

○ Or as a normal library using the common open source frameworks
■ GStreamer
■ FFmpeg
■ Anything else that can consume a C or a Rust API.

○ rav1e aims to be fast, featureful and safe.
■ Today we’ll see how far are we from this.

11

What is AV1?

AV1 is a next-generation video codec standard published by AOMedia

■ Offers best compression out of all available formats
● Designed to be used in a broad set of use cases

■ Can be used royalty-free by anyone for any purpose
● Has the support by many of the largest technology

companies in the world
● Alibaba, Amazon, Apple, ARM, Cisco, Facebook, Google, iQiyi,

Intel, Microsoft, Netflix, NVIDIA, Samsung, Vimeo, Tencent and
more than 30 others are part of the Alliance

● All of whom have pledged their patents toward AV1
■ It is already fairly ubiquitous, at least if we think about decoding

12

Decoding AV1?

AV1 decoding capability is nearly ubiquitous already

● AV1 decoding capability is built-in Android Q
● Microsoft has a media extension for it.
● Linux & macOS

○ VLC supports AV1 (using dav1d)
● Fast AV1 decoding in most browsers

○ Firefox 69
○ Chrome 77
○ Edge Insider (dev)

● Native AV1 decode with dav1d
○ Safari 12.1.12

● WASM-compiled dav1d

13

https://www.microsoft.com/en-us/p/av1-video-extension-beta/9mvzqvxjbq9v#activetab=pivot:overviewtab

Software decoding AV1 is already VERY fast

14

Hardware decoding AV1 coming VERY soon

15

Many hardware companies involved in AV1 from the beginning

■ Broadcom demo BCM7218 set top box decoder at IBC 2019
■ MediaTek Dimensity 1000 mobile SoC (expect at CES or MWC)
■ Amlogic S908X, S905X FHD/4k/8k media SoC (coming in 2020)
■ Realtek RTD1319 / RTD1311 SoC demo 4k@60 YouTube playback

https://www.cnx-software.com/2019/09/25/broadcom-bcm7218x-stb-soc-av1-hardware-decoding-wifi-6/
https://www.mediatek.com/products/smartphones/dimensity-1000
https://www.cnx-software.com/2019/10/20/amlogic-s905x4-s908x-s805x2-av1-1080p-4k-8k-media-processors/
https://www.reddit.com/r/AV1/comments/d054ks/realtek_rtd1319_rtd1311_hardware_decoder_youtube/

Encoding Av1

Encoding is always harder

■ x264 took about 7 years to become great
■ x265 needed nearly the same time to become a good competitor

● It managed to leverage a good deal of experience
● But making effective use of the HEVC features takes more

effort.

Encoding Av1 is not different

■ libaom and SVT-Av1 are built upon years of past experience
● libvpx and the whole SVT family of encoders

■ Lots of effort is being spent in using well what makes Av1
amazing.

16

Encoding Av1

Encoding Av1 since the beginning had been excruciating slow

○ libaom managed to prove you can have amazing quality
■ But at the cost of spending a huge amount of time
■ Reference SW: codebase is historically large and hard to improve

○ SVT-Av1 can be blazing fast
■ As long you have enough hardware
■ And you are satisfied with the current quality & trade-offs made

○ rav1e aims to be leaner and more frugal on resources
■ It is written from scratch in Rust
■ It tries to cover more use cases

● Focuses on explore different solutions and algorithms
● Leverage what we learned from daala to improve perceptual quality over PSNR

■ Idea: start with a fast encoder and stay fast

17

rav1e

rav1e started with the following goals

● Having a lean implementation
○ The code should stay readable

● Be fast
○ Within a bounded amount of resources required

● Be compact
○ Make so you can run multiple encodings on normal hardware

● Be good for as many purposes as possible
○ Real-time encoding
○ Batch VOD encoding
○ Everything that could be in-between the two above

18

rav1e - be lean

Every line of code is something you have to read and understand

● libaom is about 500k lines of code spread across C, C++ and some
assembly

● rav1e is about 122k lines of code, 55k rust and the rest mainly assembly.
○ We have more arch-specific assembly than actual

arch-independent rust code nowadays.
● The aggregate codebase of rav1e + dav1d is still half the size of libaom

○ You can read how Av1 encoding and decoding works in about 100k
lines of code in total.

19

rav1e - be fast

In order to be fast you have the following choices

○ Use less resources
■ By improving the algorithm in use
■ By avoiding unneeded computation

○ Use the same resources but in better ways
■ Leverage the SIMD extensions available
■ Cache locality optimization

○ Use more resources
■ Multithread processing

20

Algorithmic improvements

Av1 post-filters are particularly computationally intensive so we focused
on improving their efficiency.

● Using Integral Images managed to speed up the Loop Restoration
Filter passes.

The Rate Distortion Optimization is another onerous part of the code

● Adding proper early exit conditions in the inner loops avoided a large
number of redundant computations without impacting the quality.

More work is ongoing in integrating the filters within the rate distortion
optimizer and factorize further commonalities.

21

https://en.wikipedia.org/wiki/Summed-area_table

SIMD everything

A good deal of code is inherently parallel.

● The rav1e works together with the dav1d in sharing the SIMD
assembly optimized routines that are common between encoders
and decoders.

● Encoder-specific codepaths are usually optimized using the rust
arch-specific intrinsics.

● Since the Rust language provides more chances for the compiler to
unroll and auto-vectorize a good part of the codebase it is compiled
to SSE instructions on x86_64 and NEON instructions on AArch64.
● Using -C target-features=+avx2,+fma produce an even faster

binary, with the shortcoming of working only on recent CPUs.

22

Multithreading

○ Writing multithreaded code is usually cumbersome and error prone.
○ Rust has two features that combined make exploring parallel

processing incredibly easy
■ Fearless concurrency

● In safe Rust use-after-free and race-conditions are
impossible.

● This makes fairly easy write complex multithreaded code
○ Either it works or it would not compile (up to a point)

■ Zero-Cost-Abstraction Iterators
● Iterators are normally optimized a LOT by the compiler

○ There is a crate called rayon that converts normal Iterators in parallel
iterators.

23

https://github.com/rayon-rs/rayon

24

● AV1
This is our main encoding loop

● Presence in operating systems
○ What’s missing?

■ Encoders
● Slower than you’d wish
● Resource hungrier than you would afford
● Not for all the use-cases

○ Realtime

Multithreading in rav1e

25

● AV1
This is our main encoding loop, multithreaded

● Presence in operating systems
○ What’s missing?

■ Encoders
● Slower than you’d wish
● Resource hungrier than you would afford
● Not for all the use-cases

○ Realtime

Multithreading in rav1e

26

● AV1
Adding par_iter() requires that the Iterator obeys certain constraints
● It is working on Send data types
● It is not mutating variables captured by the closure

That may require some initial refactor but it usually pays off well.
Currently we are working on using crossbeam channels to experiment with
additional levels of parallelism and provide the users alternative APIs.

Multithreading in rav1e

https://github.com/crossbeam-rs/crossbeam

Multithreading in rav1e

It will be possible to run send_frame and receive_packet in parallel soon.

27

rav1e - compact

During development we use a number of tools make sure we keep the
resource usage under control

● memory-profiler and malt to keep track of the memory allocations.
● perf and cargo-instruments to measure the cpu usage and find hot

spots to optimize
● rust_hawktracer to visualize the critical path and decide which are the

hotspots that should have priority.
● time as a simple way to quickly keep track of the resident set usage

and actual time spent.

28

https://github.com/koute/memory-profiler
https://github.com/memtt/malt
https://perf.wiki.kernel.org/index.php/Main_Page
https://crates.io/crates/cargo-instruments
https://github.com/AlexEne/rust_hawktracer
https://www.gnu.org/software/time/

memory profiling

Live allocations for rav1e 0.1.0: 6039 peak

29

memory profiling

Live allocations for rav1e 0.2.0-p20191201: 3500 peak

30

Changing the code - Memory

Live allocations for rav1e current (da62d7a46): 3000 peak

31

memory profiling

Live allocations for svt-av1 : 462154 peak

32

memory profiling

Memory usage for rav1e 0.2.0-p20191201: 1.030 GBytes

33

memory profiling

Memory usage for svt-av1: 6.624 GBytes

34

Speed

35

rav1e - specific features

Beside work on performance a number of features is going to be tuned in
the next releases:

● RDO biasing
○ bias the bits allocation so blocks known to stay well predicted in

the future frames will have a larger bits budget
○ bias the bits allocation so high activity blocks have their budget

decreased
● chroma-luma balance: the general rule that the human eye is more

sensible to luma differences compared to chroma differences it is not
always valid.

● segmentation: per-frame quantizer deltas that can be used
independently by each block in the frame.

36

rav1e - RDO biasing

37

Spend more bits on objects which are well-predicted in future frames

Temporal RDO

Images from park_joy and Netflix-FoodMarket
37

38

Frame 1

Frame 2

Block
motion

Importance

Block Importance

● Future-importance is computed on a 4×4
block basis via propagation using motion
vectors

● The propagated value depends on the
coding cost of inter- vs. intra-prediction

● Make reference blocks more important
when it’s cheaper to code the current
block using inter-prediction

39

Block Importance

40

Block Importance

41

RDO Biasing

● The computed block importance values are used during the RDO
process to bias the distortion:

Cost = α × Distortion + λ × Rate

● For areas of low importance, the distortion is decreased (α < 1), leading to
less bits spent

● For areas of high importance, the distortion is increased (α > 1), leading to
higher

rav1e - chroma-luma balance

42

● AV1 allows different quantizers for chroma and luma
● It is possible to perceive the chroma differences more than the luma

difference for a specific range of respective quantizations
○ Investing more bits on chroma can lead to a perception boost.

rav1e - segmentation

43

● Both RDO biasing and chroma-luma balancing involve fine tuning
the quantizers per-blocks

● Av1 allows to store a number of quantizer deltas per-frame and use
them independently for each block.
○ Selecting the optimal set of quantizer improves largely the

efficiency
○ Discovering the optimal set by brute force increase a lot the

overall RDO complexity.
● There is a lot of ongoing work to tweak and improve both the

selection of parameters and speed up the overall process.

rav1e - target users and roadmap

rav1e aims at being useful for a wider audience.

● Right now it works well for you enough if
○ You need to encode batches of videos at the same time

■ Its small-ish cpu and memory footprint helps fitting multiple
processes in the same system.

○ You care about the rate control and you can afford doing a
2-passes encoding

● The ongoing work for the next feature releases will focus on
○ Improving the speed while keeping the resource usage at bay

(Started with 0.2.0)
○ Improve the quality while not decreasing the speed (from 0.3.0)

44

rav1e - last release

rav1e 0.2.0

● Depending on the workload it is up to twice as fast as 0.1.0
○ This alone does not enable the real-time encoding use case

■ Work on it will happen later, targeting 0.5.0
○ The work done on supporting AArch64 makes rav1e much more usable on that architecture.

● It does largely reduce amount of allocations
○ Less memory fragmentation chances

rav1e 0.2.1

● About 30% smaller binaries
○ About 14% faster build time

● Better quality
○ About 0.5-1.5% slower for about 1% better on x86_64

45

https://beta.arewecompressedyet.com/?job=v0.2.0%402020-01-03T10%3A54%3A37.282Z&job=v0.2.1%402020-01-03T10%3A53%3A11.333Z

rav1e - roadmap

rav1e 0.3.0 - (coming soon)

● Is faster than 0.2.0 at speeds > 5
○ Multi-threaded deblocking filter
○ Additional SIMD code
○ More auto-vectorizable codepaths and bounds check elisions
○ ⅙ less memory allocations

● A full overhaul on the RDO biasing features and their selection logic
○ This causes some speed regression on speeds < 5

● Additional encoding tools
○ Fine directional intra prediction
○ Intra edge filter

● Additional API surface and features
○ Switch frame support
○ Still Picture support (AVIF)

● Webassembly target (rayon-less builds)
46

rav1e - roadmap

rav1e 0.4.0 - (expected in late March)

● Additional channel-base API
○ it will provide a simpler usage mode
○ better threads/core usage.

● Better rate-control
○ The rate-control will support two-pass chunked encoding
○ Fast first-pass mode

● The rate-control API will be expanded
○ Aggregate the per-chunk rate-control information to produce a per-sequence summary.

47

Conclusion

Av1 is amazing and you have fewer and fewer reasons not to use it.

○ There are good software decoders for all the widespread platforms
○ The hardware support is coming along nicely
○ You might not have all the hardware other encoders require or your

use-case is not covered yet, but rav1e is going to address both soon.

48

Questions?

Thank You

49

