
FOSDEM 2020

Secure Logging with syslog-ng
Tamper evidence and confidentiality

Erik–Oliver Blass
Stephan Marwedel

01.02.2020
Security Devroom

This document describes the design, implementation, and configuration of a
secure logging service with syslog-ng. Its aim is to provide tamper evident
logging, i.e., to adequately protect log records of an information system against
tampering and disclosure and to provide a sensor indicating attack attempts.

Contents

1. Design rationale 2

2. Security Properties 2
2.1. Intuitive description . 2
2.2. Formal Definitions . 3

2.2.1. Preliminaries . 3
2.2.2. Forward Integrity (Tamper Evidence) 4
2.2.3. Forward Confidentiality . 5

3. Software architecture 6

4. Configuration 9

5. Key generation 10
5.1. Master key . 11
5.2. Host key . 11

6. Log verification 11

7. Source code layout 12

Abbreviations 13

Glossary 13

1

A. OpenSSL Documentation 13

1. Design rationale

Log records are normally produced by any information system in order to perform mon-
itoring during normal operations and for troubleshooting in case of technical problems.
Log information is equally important for retaining the security of an information system,
as security relevant events are recorded and can later be monitored for unusual patterns
which may indicate an attack attempt. Examples include log on and log off, startup and
shutdown, network service access, network filter rule application, storage access, etc. Log
records may also contain valuable information about a system that a potential attacker
intends to compromise. If an attacker is able to successfully compromise a system, they are
also able to tamper with log records, potentially hiding their traces. This makes forensic
analysis extremely difficult, as no reliable data source about system behavior immedi-
ately before the attack is available to a security analyst performing incident investigation.
Therefore, log information should be appropriately protected.

The aim of the secure logging service is to provide tamper evident logging, i.e., to ade-
quately protect log records of an information system and to provide a sensor indicating
attack attempts. The secure logging service achieves this by authentically encrypting each
log record with an individual cryptographic key used only once and protects integrity of
the whole log archive by a cryptographic authentication code. Each attempt to tamper
with either an individual log record or the log archive itself will be immediately detected
during log archive verification. Therefore, an attacker can no longer tamper with log
records without being detected.

2. Security Properties

We define forward integrity, i.e. tamper evidence and confidentiality, in two steps. First,
we present a rather informal description capturing the security intuition in a real world
environment. To avoid misunderstandings and to allow formal reasoning, we then proceed
and give rigorous game-based definitions of forward integrity and confidentiality.

2.1. Intuitive description

Informally, both forward integrity (tamper evidence) and forward confidentiality only focus
on securing log messages received by a logging device or logging service before the adversary
has compromised the device. At the time of compromise, the adversary receives full access
to the log device, learns all data and potential secrets stored on the device, can change
or add data, and can even deviate from normal program execution. Without assuming
existence of secure hardware or online connectivity, it is impossible to provide any security
guarantees after the time of compromise.

Integrity The notion of forward integrity targets protection of log messages created be-
fore the time of compromise. Roughly speaking, if a log message is received by an non-
compromised log device, its integrity will be protected in the future, even if the device will

2

get compromised at some point. Towards defining integrity in this context, we note that
after the adversary has compromised the log device, they can modify any data stored on
it. So, as we cannot prevent adversarial modifications to log data, integrity means making
tampering with previous log data evident.

More specifically, if a verifier (“analyst”) verifies a log file from a compromised log device,
the goal is to detect whether log data from before the time of compromise has been
tampered with. That is, if a total of n log messages have been stored before the time of
compromise, the verifier should detect modifications to the first n log messages during log
verification. This includes detecting whether or not the first n log messages are included
in the log file.

Note that the verifier does not know the time of compromise. If a log is successfully
verified, this does not allow the verifier to decide whether a system has been compromised
or not, and which log messages are benign, unmodified log messages. Instead, successful
verification only implies that all log messages written before the time of compromise have
been preserved.

Confidentiality Similarly, we introduce the notion of forward confidentiality to protect
sensitive information against prying adversaries. Again, we are only concerned about
confidentiality of log messages from before the time of compromise.

A folklore description of confidentiality is that, by looking at ciphertexts, an adversary
should not learn anything about underlying plaintexts. We borrow this intuition and
summarize forward confidentiality for log messages as follows. Given the log file, the
adversary should not learn anything about log messages written to the log file before
the time of compromise. Towards a more formal definition, the goal is that, given the
distribution of log messages, the adversary cannot tell anything about log messages before
the time of compromise besides their distribution. The adversary does not learn anything
new about messages. In practice, this means that the adversary cannot learn anything
besides the number of messages or their length.

There is one additional caveat: as a secure logging protocol might make use of crypto-
graphic primitives, e.g., encryption, we will have to take into account that these primitives
can fail. A standard example of an encryption scheme failing is that the adversary by
chance guesses the right encryption key. As this is unlikely, but still possible, our formal
definition below will be relaxed and state that an adversary will not learn anything about
log messages with high probability.

2.2. Formal Definitions

2.2.1. Preliminaries

In our scenario, log device L and verifier V follow a specific logging protocol Π. Log device
L creates a log file L which is eventually verified by V. More formally, a logging protocol
Π comprises the following three algorithms.

1. Gen(1λ) : this algorithm takes as input security parameter λ and outputs the initially
empty log file L and system state σ0. The idea is that σ0 is the only information
shared by the logging device and verifier V.

3

2. Log(σi−1,mi) : takes as an input the old system state σi−1 and log message m and
outputs an updated system state σi together with log entry si. Log entry si is
appended to log file L.

For performance reasons, Log must have constant O(1) time complexity in the total
number of log messages.

3. Verify(L = (s′1, . . . , s
′
j), σ

′
j , σ0): takes as input log file L, i.e., a sequence of log entries

(s′1, . . . , s
′
j), state σ′

j , and the initial system state σ0. This algorithm outputs either
1 (success) together with a sequence of log entries (m′

1, . . . ,m
′
u) or 0 (failure). We

require correctness, i.e., if j = n and (s′1 = Log(σ0,m1), . . . , s
′
n = Log(σn−1,mn)),

then the output is 1 and (m1, . . . ,mn).

For high efficiency, Verify should be running in not more than O(n) time complexity
to verify a log.

The above setup captures prominent sequential logging services such as syslog(-ng) or
rsyslog, where each new log entry is simply appended to the log. In practice, L executes
Log, and V executes Verify.

2.2.2. Forward Integrity (Tamper Evidence)

We formalize security requirements for logging using a standard game-based definition.
An adversary A compromising L has full access to the log and could, e.g., simply wipe
the whole log. In the presence of such an adversary, it is therefore impossible to protect
log entries against tampering. Our notion of integrity targets detection of tampering, i.e,
tamper evidence.

Experiment ExpFInt
A,Π (λ) 1: Forward Integrity

1 (σ0, L)← Gen(1λ);
2 stA ← A(1λ);
3 for i = 1 to n = poly(λ) do
4 (mi, stA)← A(stA);
5 (σi, si)← Log(σi−1,mi);
6 L = L||si;
7 end
8 (L′ = (s′1, . . . , s

′
j), σ

′)← A(stA, σn, L);

9 (b,m′
1, . . . ,m

′
u) = Verify(L′, σ′, σ0);

10 if [b = 1] ∧ [u < n ∨ ∃i ∈ [1, . . . , n] : mi ̸= m′
i] then

11 output 1
12 else
13 output 0

Experiment ExpFInt
A,Π shows a forward integrity game. A protocol Π = (Gen,Log,Verify)

makes use of an internal, secret state σi which we allow to evolve over time. Initial state
σ0 serves as shared secret between L and V. Let stA be the adversary’s state.

In ExpFInt
A,Π , adversary A specifies log entries mi. Each log entry mi is fed into Log out-

putting si, which is written by L to log file L. Allowing A to choose log messages will
later imply that a protocol Π is secure regardless of the distribution of log messages. Note
that A does not choose the mi adaptively as in a chosen plaintext attack.

4

At the time of compromise n, adversary A also learns the internal state σn of L and file
L. Note that A can execute Log themselves on arbitrary log entries of their choice, learn
the outcome, evolve the state etc. Eventually, A outputs a log file, containing a sequence
of strings s′i and some system state σ′.

The verification function Verify decides validity of the log file by parsing the sequence of
strings s′i in file L′, system state σ′, and initial state σ0. In the real world, Verify will be
executed by verifier V who only shares the initial state σ0 with the log device.

Definition 1 (Forward Integrity). A logging protocol Π = (Gen,Log,Verify) provides
forward integrity, iff for all probabilistic polynomial-time (PPT) adversaries A there exists
a negligible function ϵ such that

Pr[ExpFInt
A,Π (λ) = 1] = ϵ(λ).

2.2.3. Forward Confidentiality

Along the same lines, we formalize forward confidentiality in Experiment ExpFConf
A,Π (λ).

Here, adversary A chooses n pairs of two messages (mi,0,mi,1). For an initially chosen bit
b, Log creates new log entries si on message mi,b, and si is added to log file L.

Eventually, A compromises the log device and is given L and current state σn, and A
guesses b by outputting a bit b′. If b′ = b, then A has guessed b correctly, and the outcome
of Experiment ExpFConf

A,Π (λ) is 1, otherwise it is 0.

Definition 2 (Forward Confidentiality). A logging protocol Π = (Gen,Log,Verify) pro-
vides forward confidentiality, iff for all probabilistic polynomial-time (PPT) adversaries A
there exists a negligible function ϵ such that

Pr[ExpFConf
A,Π (λ) = 1] = ϵ(λ).

Note that the above definition of forward confidentiality resembles the notion of secure en-
cryption of multiple messages against an eavesdropping adversary (LR-encryption). Specif-
ically in our scenario, A does not choose messages adaptively as in a chosen plaintext
attack. As with any practical definition of confidentiality, lengths of each pair of two mes-
sages must be the same, i.e., |mi,0| = |mi,1|. In the real world, this reflects the problem
that an adversary learns information about a ciphertext just by observing its length.

5

Experiment ExpFConf
A,Π (λ) 2: Forward Confidentiality

1 (σ0, L)← Gen(1λ);
2 stA ← A(1λ);
3 b

$← {0, 1};
4 for i = 1 to n = poly(λ) do
5 (mi,0,mi,1, stA)← A(stA); // |mi,0| = |mi,1|
6 (σi, si)← Log(σi−1,mi,b);
7 L = L||si;
8 end
9 b′ ← A(stA, σn, L);

10 if b′ = b then
11 output 1;
12 else
13 output 0;

As one might expect from forward confidentiality, our definition does not relate to confi-
dentiality of log messages after the time of compromise.

A more detailed description of the threat model and the security properties of the logging
protocol used as base of the implementation can be found in [1].

3. Software architecture

Most information systems rely on standards in order to provide logging services. One of
the most widely adopted standards is the syslog protocol which is specified in RFC 5424.
Many implementations of this protocol are available. A popular extensible implementa-
tion with additional features is syslog-ng, which is an enhanced logging daemon with
advanced features for input and output. Furthermore, it features capabilities for log mes-
sage filtering, rewriting, and routing. It can be used as a drop-in replacement for existing
log daemons on UNIX systems.

syslog-ng is available for most of the systems currently in use. It contains a plugin mech-
anism which allows for extending its functionality by supplying additional functionality in
form of a suitable plugin. syslog-ng is open source software (OSS), thus facilitating the
implementation of additional functionality. Therefore, the tamper evident logging service
is implemented as a template function within syslog-ng.

In order to understand the integration of the secure logging service into syslog-ng, terms
in table 1 were defined.

6

Term Description

Source Any source of log data, e.g., a file created by a system service, a User
Datagram Protocol (UDP) or Transmission Control Protocol (TCP)
port etc.

Destination A receiver of log information, e.g., a file, a network port, etc.

Template A template is a used to format a log message in a particular way. For
example, a template may determine how the date is formatted and in
what format the message is sent to a destination

Filter A filter is a mechanism that decides to which destination a specific log
message is dispatched. Internal routing of log messages is performed
with filters.

Junction Junctions make it possible to send the messages to different channels,
process the messages differently on each channel, and then join every
channel together again. This way, a message can be split up into two
different copies that are process differently and joined together after-
wards.

Channel A channel defines a processing entity of a log message. Processing can
be done using either filters or templates.

Table 1: syslog-ng terminology

Figure 1 shows the principal architecture of syslog-ng. Log information is received from
a source.

Figure 1: General architecture of syslog-ng

A source can be any data source for which a source driver exists. A source driver converts
the data being received into the internal format of syslog-ng. Once the data is available
in the internal format, it can be filtered by a filter, rewritten by a template or routed to a
channel. Eventually, the data is written to a destination. Similar to a source, a destination
is provided by a destination driver which forwards the data accordingly.

For example, a destination can be a simple file on disk, a network port or a database. These
elements can be flexibly combined to allow for adaption of the logging system to specific use
case scenarios. As an example, consider a log host that receives log information, processes
it with the help of filters and template and forwards the formatted data to another log

7

host. This log host acts as a log relay, as it does not feature a persistent destination, like a
file or database. Such a configuration would allow for the setup of a set of log relays that
will all forward their data to a central log collector that features a persistent destination.

syslog-ng is configured by means of a configuration file. This file has separate sections for
sources, filters, templates, channels and destination. Each of the entities configured can
be combined to define a particular log entry. The syslog-ng system features an efficient
implementation based on internal reference counting that prevents a message from being
copied if is to be filtered by different filters or written to different destinations.

The secure logging service uses the template mechanism of syslog-ng for implementation,
see Figure 2.

Figure 2: Integration of secure logging template into syslog-ng

A log message from any source is passed to the secure logging template. This template
takes the raw, i.e. unformatted message as an input and rewrites as an encrypted message
with integrity protection. In this form, the message is then passed to the next processing
step. This can be either a direct output to a destination or to a channel for routing
purposes. Each log message that is passed to the template will be encrypted with its own
key. The location of the key file is specified in the template configuration. Additionally, a
message authentication code (MAC) for the integrity protection of the complete encrypted
log archive is stored in a file. The location of that file is also part of the secure logging
configuration.

The following extract from a log archive created with the secure logging service shows how
log entries are stored. Listing 3 shows the original log message received at the source.

1 Dies ist eine Log Nachricht

2 Und dies auch

3 Hier kommt mal eine laengere Nachricht

Listing 3: Original log messsages

Listing 4 shows the log messages after they have been passed through the secure logging
template and have been written to the destination. The entries in listing 4 have been

8

truncated due to space restrictions. The truncation is indicated by the trailing dots which
are not part of the actual log record.

1 AAAAAAAAAAA =: wp0KVPUTxHGEXMd1jxPPVKqK+aztmaN4tEpqNCstIUuFBBi ...

2 AQAAAAAAAAA =: jwYQbBqTun7jcEQ6ns5UIwePwQXI3HKLpPROAZOYtTeNB1i ...

3 AgAAAAAAAAA =: XdCte4wSegtu/EnRa7JheQ3AMY9pKT1Gbio/c03RkT3dyuD ...

Listing 4: Encrypted log archive

Log entries are numbered sequentially. The first field of a log entry contains this number in
hexadecimal form followed by a colon. The rest of the line contains the actual log record.
After successful verification the log archive would look like depicted in listing 5.

1 0000000000000000: Dies ist eine Log Nachricht

2 0000000000000001: Und dies auch

3 0000000000000002: Hier kommt mal eine laengere Nachricht

Listing 5: Log archive from listing 4 after successful verification

4. Configuration

The secure logging service uses the standard configuration mechamism of syslog-ng. It
adds the following template statement to the configuration:

1 $(slog -k /var/slog/host.key -m /var/slog/mac.dat $RAWMSG)

Listing 6: Secure logging template configuration

In this statement, slog is the name of the template function. This name is part of
the template implementation and cannot be changed. The parameter -k indicates the
location of the key file on the host where the instance is running. Parameter -m indicates
the location of the file containing the message authentication code. $RAWMSG represents
the original log message without any formatting.

Listing 7 shows an example of a valid configuration file with secure logging functionality
enabled.

9

1 source s_network {

2 network(

3 transport ("udp")

4 port (514)

5

6 # NOTE: Secure logging requires this flag to be set

7 flags(store -raw -message)

8);

9 };

10

11 # Secure logging template with key and MAC file locations

12 template t_slog {

13 template ("$(slog -k /var/slog/host.key -m /var/slog/mac.dat '
$RAWMSG)\n");

14 };

15

16 # Destination that uses the TELS template

17 destination d_local {

18 file ("/var/log/messages.slog" template(t_slog));

19 };

20

21 log {

22 source(s_network);

23 destination(d_local);

24 };

Listing 7: syslog-ng configuration example

Lines 1–9 define a source in form of a UDP network socket listening on port 514. This
is the standard syslog service port using the UDP protocol. Line 7 activates the option
for storing the original message without any formatting in addition to the parsed format.
This is required to be specified for every source which is in conjunction with the secure
logging template. Otherwise, the $RAWMSG macro will be empty. Line 13 defines the secure
logging template with parameters as defined above. Pay attention to the line feed at the
end of the template configuration. If this is missing, the log archive comprises only one
single line. If a line feed is specified as in the example, each log record will be written on
exactly one line in the log archive. In contrast to the key file, the Message Authentication
Code (MAC) is automatically generated by the secure logging service and does not need
to be supplied on startup.

5. Key generation

The secure logging service needs to be supplied with an initial cryptographic key K0.
This key will only be used to bootstrap the service, i.e. to encrypt the very first log
entry and will be overwritten afterwards. Each log record will be encrypted by its own
individual cryptographic key. These keys are generated based on on the previous key by
key evolvement function which is part of the core secure logging functionality. The secure
logging service features the slogkey utility for the generation of cryptographic keys for
the service. Key generation is done in two steps. A master key is generated first. Starting
from this master key, a host key is generated for each host for which the secure logging
service shall be enabled.

10

5.1. Master key

The master key Km is generated by supplying the -m option to the slogkey utility like
in the following example:

1 slogkey -m /etc/syslog -ng/master.key

The master key Km is required for subsequent log verification and must should never be
stored on the log host.

5.2. Host key

Host key K0 is generated from master key Km by supplying the -d option to the slogkey
utility with appropriate arguments like in the following example:

1 slogkey -d /etc/syslog -ng/master.key a08cefa7b520 CAC7119N43 '
/var/slog/host.key

The option arguments designates the file location of the master key Km which is used for
derivation of the host key. The other arguments are the hardware ethernet address of the
host system, the serial number of the host hardware and the file receiving the host key K0,
respectively. Instead of the hardware ethernet address or the serial number any other pair
of strings that uniquely identifies a particular host can be used for the host key creation.
This initial key K0 is required for subsequent log verification. It can always be generated
from the master key Km. See the manual page supplied with the slogkey utility for more
information on how to use this utility.

6. Log verification

Log archive verification is performed with the utility slogverify which is also part of
the secure logging service. For successful log archive verification the host key K0, the file
containing the message authentication code for the log archive and the log archive to be
verified must be passed to the utility. Additionally, a buffer size can be passed as optional
argument, in case very large log archives. These can only be verified in chunks and the
buffer must be sized appropriately in order not to overload the system. If the buffer size
is not passed in the default buffer size of 1000 log entries is used. A typical command line
for log verification would look like this:

1 slogverify /var/slog/host.key /var/slog/messages.slog '
/var/slog/mac.dat /var/slog/messages.log 1500

See the manual page supplied with the slogverify utility for more information on how
to use this utility.

11

7. Source code layout

The listing below shows the location of code for the secure logging service within the
syslog-ng source tree. The unit tests of syslog-ng need as an additional dependency
the unit testing framework Criterion.

<syslog-ng source root>

doc

manManual pages for secure logging command line utilities
lib

slog.h

slog.c.....................................Secure logging core functionality
modules

cryptofuncs

cryptofuncs.c..........Secure logging template in tf_slog_prepare and
tf_slog_call

slogimport

slogimport.c.......................Command line tool for log import
slogkey

slogkey.c................Command line tool for initial key generation
slogverify

slogverify.c...................Command line tool for log verification
tests

test_cryptofuncs.c.......................Secure logging unit tests in
test_slog_functionality

Listing 8: Secure logging source code integration into syslog-ng

The Criterion framework is not part of the Extra Packages for Enterprise Linux (EPEL)
and must be installed separately in case unit testing is to be performed. It is available at

https://github.com/Snaipe/Criterion

The source package needs to be configured accordingly if the unit tests are to be executed.
The unit tests for the secure logging service are implemented in file testcryptofuncs.c.

References

[1] Erik-Oliver Blass and Guevara Noubir. “Secure Logging with Crash Tolerance”. In:
IEEE Conference on Communications and Network Security (2017). url: https:
//eprint.iacr.org/2017/107.pdf.

12

https://github.com/Snaipe/Criterion
https://eprint.iacr.org/2017/107.pdf
https://eprint.iacr.org/2017/107.pdf

Abbreviations

Notation Description

EPEL Extra Packages for Enterprise Linux

EVP Envelope

GCM Galois Counter Mode

MAC Message Authentication Code

TCP Transmission Control Protocol

UDP User Datagram Protocol

Table 2: Abbreviations

Glossary

Integrity tag An integrity tag is an additional piece of information that is added to a
message to confirm its integrity. A message receiver can then verify whether the
received message has been tampered with during transit. Integrity tags are normally
generated by message authentication codes.

Message authentication code A message authentication code (MAC) is a cryptographic
technique to protect data integrity. When supplied with a message m and a cryp-
tographic key k, a MAC produces an integrity tag t. A sender sends m together
with t to a receiver. Knowing key k, the receiver verifies that message m has not
been tampered with during transit by computing a MAC of the message received
and comparing the resulting integrity tag with t.

A. OpenSSL Documentation

The OpenSSL documentation1 on how to use the Envelope (EVP) interface and the Galois
Counter Mode (GCM) is included here as a reference. An up to date version of this
documentation can be found at

https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption

EVP Authenticated Encryption and Decryption

The EVP interface supports the ability to perform authenticated encryption and decryption, as well
as the option to attach unencrypted, associated data to the message. Such Authenticated-Encryption
with Associated-Data (AEAD) schemes provide confidentiality by encrypting the data, and also pro-
vide authenticity assurances by creating a MAC tag over the encrypted data. The MAC tag will
ensure the data is not accidentally altered or maliciously tampered during transmission and storage.

There are a number of AEAD modes of operation. The modes include EAX, CCM and GCM mode.
Using AEAD modes is nearly identical to using standard symmetric encryption modes like CBC, CFB
and OFB modes.

1Version from 8 October 2019

13

https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption

As with standard symmetric encryption you will need to know the following:

• Algorithm (currently only AES is supported)

• Mode (currently only GCM and CCM are supported)

• Key

• Initialisation Vector (IV)

In addition you can (optionally) provide some Additional Authenticated Data (AAD). The AAD data
is not encrypted, and is typically passed to the recipient in plaintext along with the ciphertext. An
example of AAD is the IP address and port number in a IP header used with IPsec.

The output from the encryption operation will be the ciphertext, and a tag. The tag is subsequently
used during the decryption operation to ensure that the ciphertext and AAD have not been tampered
with.

The OpenSSL manual describes the usage of the GCM and CCM modes here: Manual:EVP Encryp-
tInit(3)#GCM Mode.

The complete source code of the following examples can be downloaded as evp-gcm-encrypt.c resp.
evp-ccm-encrypt.c.

Contents

• 1 Authenticated Encryption using GCM mode

• 2 Authenticated Decryption using GCM mode

• 3 Authenticated Encryption using CCM mode

• 4 Authenticated Decryption using CCM mode

• 5 Potential Issue in AES/GCM

• 6 See also

Authenticated Encryption using GCM mode

Encryption is performed in much the same way as for symmetric encryption as described here. The
main differences are:

• You may optionally pass through an IV length using EVP CIPHER CTX ctrl

• AAD data is passed through in zero or more calls to EVP EncryptUpdate, with the output
buffer set to NULL

• Once private data has been added using EVP EncryptUpdate (non-NULL output buffer), you
cannot add AAD data

• After the EVP EncryptFinal ex call a new call to EVP CIPHER CTX ctrl retrieves the tag

See the code below for an example:

int gcm_encrypt(unsigned char *plaintext, int plaintext_len,

unsigned char *aad, int aad_len,

unsigned char *key,

unsigned char *iv, int iv_len,

unsigned char *ciphertext,

unsigned char *tag)

{

EVP_CIPHER_CTX *ctx;

int len;

14

int ciphertext_len;

/* Create and initialise the context */

if(!(ctx = EVP_CIPHER_CTX_new()))

handleErrors();

/* Initialise the encryption operation. */

if(1~!= EVP_EncryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL))

handleErrors();

/*

* Set IV length if default 12 bytes (96 bits) is not appropriate

*/

if(1~!= EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, iv_len, NULL))

handleErrors();

/* Initialise key and IV */

if(1~!= EVP_EncryptInit_ex(ctx, NULL, NULL, key, iv))

handleErrors();

/*

* Provide any AAD data. This can be called zero or more times as

* required

*/

if(1~!= EVP_EncryptUpdate(ctx, NULL, &len, aad, aad_len))

handleErrors();

/*

* Provide the message to be encrypted, and obtain the encrypted output.

* EVP_EncryptUpdate can be called multiple times if necessary

*/

if(1~!= EVP_EncryptUpdate(ctx, ciphertext, &len, plaintext, plaintext_len))

handleErrors();

ciphertext_len = len;

/*

* Finalise the encryption. Normally ciphertext bytes may be written at

* this stage, but this does not occur in GCM mode

*/

if(1~!= EVP_EncryptFinal_ex(ctx, ciphertext + len, &len))

handleErrors();

ciphertext_len += len;

/* Get the tag */

if(1~!= EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, 16, tag))

handleErrors();

/* Clean up */

EVP_CIPHER_CTX_free(ctx);

return ciphertext_len;

}

15

Authenticated Decryption using GCM mode

Again, the decryption operation is much the same as for normal symmetric decryption as described
here. The main differences are:

• You may optionally pass through an IV length using EVP CIPHER CTX ctrl

• AAD data is passed through in zero or more calls to EVP DecryptUpdate, with the output
buffer set to NULL

• Prior to the EVP DecryptFinal ex call a new call to EVP CIPHER CTX ctrl provides the tag

• A non positive return value from EVP DecryptFinal ex should be considered as a failure to
authenticate ciphertext and/or AAD. It does not necessarily indicate a more serious error.

See the code example below:

int gcm_decrypt(unsigned char *ciphertext, int ciphertext_len,

unsigned char *aad, int aad_len,

unsigned char *tag,

unsigned char *key,

unsigned char *iv, int iv_len,

unsigned char *plaintext)

{

EVP_CIPHER_CTX *ctx;

int len;

int plaintext_len;

int ret;

/* Create and initialise the context */

if(!(ctx = EVP_CIPHER_CTX_new()))

handleErrors();

/* Initialise the decryption operation. */

if(!EVP_DecryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL))

handleErrors();

/* Set IV length. Not necessary if this is 12 bytes (96 bits) */

if(!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, iv_len, NULL))

handleErrors();

/* Initialise key and IV */

if(!EVP_DecryptInit_ex(ctx, NULL, NULL, key, iv))

handleErrors();

/*

* Provide any AAD data. This can be called zero or more times as

* required

*/

if(!EVP_DecryptUpdate(ctx, NULL, &len, aad, aad_len))

handleErrors();

/*

* Provide the message to be decrypted, and obtain the plaintext output.

* EVP_DecryptUpdate can be called multiple times if necessary

*/

if(!EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext, ciphertext_len))

handleErrors();

plaintext_len = len;

16

/* Set expected tag value. Works in OpenSSL 1.0.1d and later */

if(!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, tag))

handleErrors();

/*

* Finalise the decryption. A positive return value indicates success,

* anything else is a failure - the plaintext is not trustworthy.

*/

ret = EVP_DecryptFinal_ex(ctx, plaintext + len, &len);

/* Clean up */

EVP_CIPHER_CTX_free(ctx);

if(ret > 0) {

/* Success */

plaintext_len += len;

return plaintext_len;

} else {

/* Verify failed */

return -1;

}

}

Authenticated Encryption using CCM mode

Encryption with CCM mode is much the same as for encryption with GCM but with some additional
things to bear in mind.

• you can only call EVP EncryptUpdate once for AAD and once for the plaintext.

• The total plaintext length must be passed to EVP EncryptUpdate (only needed if AAD is
passed)

• Optionally the tag and IV length can also be passed. If they are not then the defaults are used
(12 bytes for AES tags, and 7 bytes for AES IVs)

See the code below for an example:

int ccm_encrypt(unsigned char *plaintext, int plaintext_len,

unsigned char *aad, int aad_len,

unsigned char *key,

unsigned char *iv,

unsigned char *ciphertext,

unsigned char *tag)

{

EVP_CIPHER_CTX *ctx;

int len;

int ciphertext_len;

/* Create and initialise the context */

if(!(ctx = EVP_CIPHER_CTX_new()))

handleErrors();

/* Initialise the encryption operation. */

if(1~!= EVP_EncryptInit_ex(ctx, EVP_aes_256_ccm(), NULL, NULL, NULL))

17

handleErrors();

/*

* Setting IV len to 7. Not strictly necessary as this is the default

* but shown here for the purposes of this example.

*/

if(1~!= EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_IVLEN, 7, NULL))

handleErrors();

/* Set tag length */

EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, 14, NULL);

/* Initialise key and IV */

if(1~!= EVP_EncryptInit_ex(ctx, NULL, NULL, key, iv))

handleErrors();

/* Provide the total plaintext length */

if(1~!= EVP_EncryptUpdate(ctx, NULL, &len, NULL, plaintext_len))

handleErrors();

/* Provide any AAD data. This can be called zero or one times as required */

if(1~!= EVP_EncryptUpdate(ctx, NULL, &len, aad, aad_len))

handleErrors();

/*

* Provide the message to be encrypted, and obtain the encrypted output.

* EVP_EncryptUpdate can only be called once for this.

*/

if(1~!= EVP_EncryptUpdate(ctx, ciphertext, &len, plaintext, plaintext_len))

handleErrors();

ciphertext_len = len;

/*

* Finalise the encryption. Normally ciphertext bytes may be written at

* this stage, but this does not occur in CCM mode.

*/

if(1~!= EVP_EncryptFinal_ex(ctx, ciphertext + len, &len))

handleErrors();

ciphertext_len += len;

/* Get the tag */

if(1~!= EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_GET_TAG, 14, tag))

handleErrors();

/* Clean up */

EVP_CIPHER_CTX_free(ctx);

return ciphertext_len;

}

Authenticated Decryption using CCM mode

Decryption with CCM mode is much the same as for decryption with CCM but with some additional
things to bear in mind.

• you can only call EVP DecryptUpdate once for AAD and once for the plaintext.

• The total ciphertext length must be passed to EVP DecryptUpdate (only needed if AAD is

18

passed)

• Optionally the tag and IV length can also be passed. If they are not then the defaults are used
(12 bytes for AES tags, and 7 bytes for AES IVs)

• The tag verify is performed when you call the final EVP DecryptUpdate and is reflected by
the return value: there is no call to EVP DecryptFinal.

See the code below for an example:

int ccm_decrypt(unsigned char *ciphertext, int ciphertext_len,

unsigned char *aad, int aad_len,

unsigned char *tag,

unsigned char *key,

unsigned char *iv,

unsigned char *plaintext)

{

EVP_CIPHER_CTX *ctx;

int len;

int plaintext_len;

int ret;

/* Create and initialise the context */

if(!(ctx = EVP_CIPHER_CTX_new()))

handleErrors();

/* Initialise the decryption operation. */

if(1~!= EVP_DecryptInit_ex(ctx, EVP_aes_256_ccm(), NULL, NULL, NULL))

handleErrors();

/* Setting IV len to 7. Not strictly necessary as this is the default

* but shown here for the purposes of this example */

if(1~!= EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_IVLEN, 7, NULL))

handleErrors();

/* Set expected tag value. */

if(1~!= EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, 14, tag))

handleErrors();

/* Initialise key and IV */

if(1~!= EVP_DecryptInit_ex(ctx, NULL, NULL, key, iv))

handleErrors();

/* Provide the total ciphertext length */

if(1~!= EVP_DecryptUpdate(ctx, NULL, &len, NULL, ciphertext_len))

handleErrors();

/* Provide any AAD data. This can be called zero or more times as required */

if(1~!= EVP_DecryptUpdate(ctx, NULL, &len, aad, aad_len))

handleErrors();

/*

* Provide the message to be decrypted, and obtain the plaintext output.

* EVP_DecryptUpdate can be called multiple times if necessary

*/

ret = EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext, ciphertext_len);

plaintext_len = len;

19

/* Clean up */

EVP_CIPHER_CTX_free(ctx);

if(ret > 0) {

/* Success */

return plaintext_len;

} else {

/* Verify failed */

return -1;

}

}

Potential Issue in AES/GCM

Early versions of the authenticated encryption interface required using a 0-sized array (not a NULL
array) to arrive at the proper authentication tag when the authentication tag size was not a multiple
of the block size (for example, an authentication tag size of 20 bytes). For more information on the
issue and the work-arounds, see Issue #2859: Possible bug in AES GCM mode and Possible bug in
GCM/GMAC with (just) AAD of size unequal to block size.

20

	Design rationale
	Security Properties
	Intuitive description
	Formal Definitions
	Preliminaries
	Forward Integrity (Tamper Evidence)
	Forward Confidentiality

	Software architecture
	Configuration
	Key generation
	Master key
	Host key

	Log verification
	Source code layout
	Abbreviations
	Glossary
	OpenSSL Documentation

