
Vector Optimized
Library of Kernels

2020 in review

What’s VOLK again?

Vector Optimized Library of Kernels (VOLK)

- libvolk is written in C!

- Currently available under GPLv3

- Collection of hand-optimized SIMD kernels

- Optimized for several architectures and platforms

Focus: Software Radio applications

- Let us know about your use case!

Website: libvolk.org Repository: github.com/gnuradio/volk

Idea

- Common function interface

- Architecture specific SIMD implementations

- Load best implementation at runtime

https://www.libvolk.org/
https://github.com/gnuradio/volk

History

Around 2010: Introduced as part of GNU Radio

Around 2015: Split off of GNU Radio as an independent library

Currently VOLK is a library under the GNU Radio organization umbrella

Maintainers

Before ‘15: GNU Radio maintainers

‘15 to ‘19: Nathan West

‘19 to current: Johannes Demel and Michael Dickens

Michael DickensJohannes Demel

Basics - Installation

Your favorite package manager

conda install -c conda-forge volk

git clone --recursive \
 https://github.com/gnuradio/volk.git
cd volk
mkdir build
cd build
cmake ..
make -j8 # your choice
sudo make install
sudo ldconfig

sudo apt install libvolk2-dev

First thing to do

volk_profile

Reason:

- Creates `.volk/volk_config`

- Benchmarks fastest kernel on YOUR system

- Saves this info to make future VOLK kernel calls fast!

Entries look like:
volk_32fc_x2_multiply_32fc

kernel_name

a_avx2_fma

aligned

u_sse3

unaligned

sudo port install volk

Basics - usage

// C

// 32byte AVX aligned memory with 64 float complex elements.

const size_t avx_alignment = 32; // byte alignment

float complex* values =

 (float complex*) volk_malloc(512, avx_alignment);

volk_free(values); // don’t forget this! It’s your memory!

// C++

auto values = volk::vector<complex<float> >(64);

Aligned memory

// C

volk_32fc_x2_multiply_32fc(result, values,

 more_values,

 num_values);

// C++

volk_32fc_x2_multiply_32fc(result.data(),

 values.data(),

 more_values.data(),

 num_values);

Function calls

- Use the new C++ helpers for memory management!

- Aligned memory access often faster
- Common interface

- VOLK takes care of specific kernel calls

Basics - language

Runtime

VOLK library

- Written in C11

Support code

- C++
- `volk_profile`
- `volk-config-info`
- Aligned vector `volk::vector`

Build time

- CMake
- Python

Github might have gotten that one wrong...

Releases

v2.2.0

2020 Feb 16

Releases are GPG and signify signed!

v2.4.1

2020 Dec 17

v2.4.0

2020 Nov 22

v2.3.0

2020 May 9

v2.2.1

2020 Feb 24

We aim for regular releases, e.g., every 2 months

BUT: Only if there are changes to release

Suggestions for improvements?

→ Please let us know!

Statistics - basics

Pull Requests 2020

- Opened: 66

- Closed: 64

Issues 2020

- Opened: 45

- Closed: 37

Contributors

- All time: 61

- 2020: 21

We need more numbers to get here!

● ANSI C: 34,448 (90.35%)

● C++: 1,671 (4.38%)

● Asm: 802 (2.10%)

● Python: 735 (1.93%)

● XML: 357 (0.94%)

● sh: 114 (0.30%)

total: 38,127

generated using David A. Wheeler's 'SLOCCount'

Statistics - users

How many users do we have?

- We don’t know… BUT

Insights into our user base would be great

- Improve usability

- Identify future directions...

Statistics - authors

Contributors per year - and first appearance

Plot tool: github.com/hpjansson/fornalder

https://github.com/hpjansson/fornalder

Statistics - commits

Commits over years

Statistics - more graphs

Changes over years

- Auto format ruins statistics...

Commits in 2019 - 2020

- Is VOLK a winter project? ...

Major changes - code

Prerequisites

- Require C11
- Use `aligned_alloc` whenever possible

- CMake 3.8+

- Build time
- Require Python3

Support infrastructure (volk_profile, etc.)

- Mostly remove Boost!
- New GCC/Clang use C++17 features

Many new NEON kernels available

Enforce code formatting

- Inherited from GNU Radio

- We use clang-format

Major changes - infrastructure

Continuous Integration

- Extended tests

- TravisCI
- GCC 4.8, 6, 7, 8, 9
- Clang 6, 8, 9, 10
- ARM aarch64
- QEMU cross build
- Intel SDE
- And broken… cf. TravisCI policy

- AppVeyor

- Github Actions
- macOS Intel
- Windows
- Linux
- Linux static library

Major changes - features

cpu_features

- Detect available CPU features
- SSE, AVX, NEON, etc.

- Benefit from shared expertise

- Platform independent (Linux, but also macOS, etc.)

macOS and Windows

Optimized kernels available

- Fix cpu feature detection

- Have reliable CI

- Better cpu feature detection

- Currently for Intel

- macOS ARM64 coming

https://github.com/google/cpu_features

Move to LGPLv3

Current license

- GPLv3+

History

- VOLK was part of GNU Radio

- GNU Radio is licensed under GPLv3+

Idea: Move to LGPLv3

Why?

- Community suggestion

- VOLK should see greater adoption

Why not BSD/MIT/Apache?

- Fairness
- You get a library
- Give back

Who wants to participate in this effort?

Future directions

More ARM

● SVE?

More AVX

● Have an AVX version for all kernels

● Currently only few AVX512 kernels.
○ e.g., I’m stuck with AVX2 at the moment.

More architectures?

● RiscV seems appealing

● PowerPC ?

Switch to DCO instead of CLA

● Lost a potential contributor presumably because of CLA recently

VOLK v3.0? → Breaking API

● Sanitize interface
○ C library that exports C functions

● Switch to LGPLv3

Get to know YOU

We’d like to know more about our users!

Are you a VOLK package maintainer for a system? Let us know!

