The user in the cultures of
UX design and open source

Jan Dittrich

Design in Open
source seems
hard

Different Values,
Difterent Practices

Eric S. Raymond: The Cathedral and the
Bazaar

The User

Donald Norman: The Design of Everyday
Things

The Cathedral User and Creator are
and the Bazaar the same person

User and

Cre atO r are the “1. Every good work of software
starts by scratching a developer's
Sdllle p erson personal itch”

..from the start:

User and
Cre atOI‘ are the “6. Treating your users as

co-developers is your least-hassle

Saline p erson route to rapid code improvement

and effective debugging.”

...and with growth

User and Creator

In “The Cathedral And the Bazaar”

Are ideally the same person
Creating for their own need/use

Attracting other, similar people

In “The Design of Everyday things”

US e r and ...In their work, designers often

become expert with the device...

Cre atO ' mu St Users are often expert at the task...
be different p1ss

“Design teams really need vocal
advocates for the people who will

User and ultimately use the interface”
Creator must Because

1 [Creators] “tend to simplify their
be different (Creators] ‘tend o simplify

p156

US e r and The only way to find out is to test

the designs on users-people as

Cre atO ' TNu St similar to the eventual purchaser

of the product as possible.

be different 6

User and Creator

In “The Cathedral And the Bazaar”

Are ideally the same person
Creating for their own need/use

Attracting other, similar people

In “The Design of Everyday things”

Have different expertise
Have different interests

Creators need thus to learn what helps users by
empirical methods

User and Creator

In “The Cathedral And the Bazaar” In “The Design of Everyday things”

Are ideally the same person Have different expertise

Creating for their own need/use Have different interests

Attracting other, similar people Creators need thus to learn what helps users by

empirical methods

Assumes a community of like-minded Assumes an organization with division of labor
user/creators who can code around creating products that are bought

User and Creator

Ux
Open Source
“This feature would be What?! Creators are
interesting, lets try!” not the users!
Why? If I can build “Let’s find out what
it?! Also: not fun. users actually need!”

Easy to modularize, hard to use for beginners

s Add a parameter
Call another program
Pipeit

Everything is possible

Hard to modularize, easy use for beginners

One coherent Ul

g

ﬁ?ﬂj Works like the ones you know
=

this is summer - But what if WANT TO ADD A BUTTON for...

El
Rebyn

Screenshot from https:/github.com/elementary/music

What is modular about GUIs?

Icons!

Libre Office Themes
B-E-3-3 4 =g R Elementary
O -5~ B [& [o4 Colibre
J-B-%¥~- 3 H B8 & Yaru

So much Open Source Design is icon design since changing/adding icons

it does not clash with typical open source development concerns — or actually fits it well

Coherence

The model of the “Bazaar” tolerates
incoherence. Or needs it. The best ways will
win in the end.

Incoherence is also no problem, as the
competent user/creator will have no problem
with it

The “Design of Everyday Things” needs
coherence. With the existing skills of users,
within the product

Incoherence is a problem, as the user might
know nothing about the products technology.

Coherence

Incoherence in the Ul is a problem, as the user

Incoherence in the Ul is also no problem, as
might know nothing about the products

the competent user/creator will have no

problem with it. technology.

Coherence in the Ul is a problem, as it makes Coherence is great, it will create ease of use
changes hard and conflict and politics-prone.

Problems should be solved by modularity and Problems should be solved by finding needs

experimentation and principles

Combining the needs?

Modularity Coherence
Experimentation Empiricism
Being competent creator and NOT being the user but learning about

user them

Combining the two?

Hard

But here are some helps for small wins

Boundary Objects for collaboration

Boundary Objects for collaboration

Interface Design Guidelines
Design Systems

(GUI) Extension APIs

Interface
guidelines

Back to the 90s!

When to use which element
and why

Gnome Interface Guidelines Screenshot,
Copyright © 2005-2014 The GNOME Project

Whether you are a developer or a designer, these guidelines contain everything you need to design effective applications using GTK. They cover

design principles for GNOME 3, common guidelines such as how to write text and use images and icons, as well as a library of design patterns

which you can use in your application.

While the HIG places an emphasis on designing for GNOME 3, it can also be used to create cross-platform applications, as well as for
applications that have previously followed the GNOME 2 Human Interface Guidelines. The compatibility guidelines contain more information on
this.

Core material

Patterns and user interface elements form the core of the HIG. Together, they are the building blocks for application design. If you are new to
the HIG, it is recommended that you start with the page on design principles and then browse the patterns, before going on to other material.

Design principles General design guidelines and advice.
Patterns Essential and optional design components.

User interface elements Guidelines on common elements, such as buttons, progress bars and popovers.

Common guidelines

These guidelines apply to the full range of design elements. it is recommended that you familiarize yourself with them.

Application basics Basic application behavior and characteristics.

Compatibility Using the HIG for cross-platform or GNOME 2 style applications.
Visual layout Arranging elements within user interfaces.

Writing style Writing text for your user interface, including capitalization rules.
Icons and artwork Guidelines on selecting and creating icons.

Typography Advice on font sizes, weights and styles, as well as special characters.

Pointer and touch input Mouse, touchpad and touchscreen interaction.

Kavhnard inmnnt Kauvuhmard navioatinn arcace and chartri it vauce

Interface guidelines

https://docs.microsoft.com/en-us/windows/win32/uxguide/guidelines

https://docs.microsoft.com/en-us/windows/win32/uxguide/guidelines

Design systems

Input Box

Ul Elements...

Box Label

...and how to combine them

Name

Atomic Design by Brad Frost
Manage a Design System in Storybook, Dev focus

https://atomicdesign.bradfrost.com/table-of-contents/
https://storybook.js.org/

Design systems

Inputs

Dropdown

Dropdown Input

Value

Dropdown Input

Value

First Entry

purposefully not

Selected Text 27 9719

Following Point

Text input

Il
Text Input Base

Value

Text Input Focussed

Value

Text Input Error

Value

A

Please check the foobar, it seems to be
incorrect. Without a correct foobar, we

@ WIKIMEDIA Spenden Mitglied werden Héaufige Fragen
Die Wikimedia Fordergesellschaft ist eine unabhangige gemeinnitzige Organisation, die in
Deutschland Spenden far Wikipedia und andere Wikimedia-Projekte sammelt.

Sie spenden: halbjahrlich 75,00 Euro via Lastschrift Zahldaten andern

Wie lauten Ihre IBAN und BIC?

IBAN (oder Kontonummer)

z. B. DE12345678909876543210

Spenden als...

(O Privatperson

Mittelverwendung

Verschlisse

Frage zum!
Rufen Sie ur

Kontaktforn

030/2191!

Extendable Uls

Coherent mechanism
for Ul extension and an
API of what such an
extension is allowed to
do (without messing up
other functions)

Extendable Uls

Might be a mess in the
managed-by-extension
space BUT at least not
messing with the rest of
the application.

Firefox Web Extensions

Chrome Browser
Extensions

D Pz |

: @ 5':?5«;; Badger o<

No trackers blocked

Disable Privacy Badger for
this site

Did Privacy Badger break
this site? Let us know!

@ Donate to EFF

vers

on 2020.12.10

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://developer.chrome.com/docs/extensions/reference/
https://developer.chrome.com/docs/extensions/reference/

Extendable Uls

Best if build upon a design
system and/or with the
standard GUI elements

Jamovi Statistics

¢ 02
Bplomtion TTests ANOVA Regiesson
One-Way ANOVA
&A Q
&B
&C
Variances

' Dont assume equal (Welchs)
Assume equal (Fisher's)
Missing Values
@ Exclude cases analysis by analysis
Exclude cases listwise

> | PostHoc Tests

ooa

Frequencies Fackor

Variables

Grouping Variable

Additional Statistics
Descriptives table
Descriptives plots

Assumption Checks
Homogeneity test
Normality test
Q- Piot

taccules
Results

Reliability Analysis

Scale Rekabiity Statistics

Cronbacts a

scale

[z

Reliability Analysis
Scale Rebabiity Statistics

Cronbactis a

scale

£

Proportion Test (2 Outcomes)

Binomial Test

Level Count Total Proportion P

One-Way ANOVA

One-Way ANOVA (Welchs)
F dft df2 P

https://dev.jamovi.org/

Extendable Uls

Best lf buﬂd upon a deSign PROJECT MANAGER JS store.js X JS use
. v FAVORITES (2) gm_vue3 > state > JS sto
SYStem and/or Wlth the fordes - content

standard GUI elements S MieSChbekitockun

VS Code

TERMINAL

https://code.visualstudio.com/api

Recap

Very different views on what a “good” user is and how to work with them

Open Source: Experimenting user/creator in a community similar to them
UX Design: Designing for others using empirical research.

Boundary Objects shared by designers and devs:
— Interface Guidelines
— Design systems

Create APIs for changing Uls

Thank You

Jan Dittrich

Works at Wikimedia Deutschland eV
as user researcher

@simulo

d_jan@ymail.com

