MariaDB

Foundation

Mariabackup + Restic: A simple and efficient
online backup solution for your DBs

Faustin Lammler faustin@mariadb.org

mailto:faustin@mariadb.org

Menu

Presentation of MariaDB-backup
o Normal backup

o Incremental backup

Presentation of the Restic backup solution
o Normal backup

o Incremental backup

Restic remote storage (backends)

Performance considerations

e Tips

e Links

Mariabackup

Mariabackup or mariadb-backup is an open source tool provided by MariaDB for
performing physical online backups of InnoDB, Aria and MyISAM tables. For
InnoDB, "hot online" backups are possible.

It was originally forked from Percona XtraBackup 2.3.8. It is available on Linux and
Windows, see: https://mariadb.com/kb/en/mariabackup-overview/.

Note: you can use mariabackup or mariadb-backup command, the first one being a
symbolic link to the second one.

https://mariadb.com/kb/en/mariabackup-overview/

Installation

The mariadb-backup executable is included in binary tarballs on Linux:
https://mariadb.com/kb/en/installing-mariadb-binary-tarballs/

Via the package manager:

e Debian/Ubuntu

sudo apt-get install mariadb-backup

e RedHat/Fedora

sudo dnf install MariaDB-backup

https://mariadb.com/kb/en/installing-mariadb-binary-tarballs/

Creating local backup (1)

mariadb-backup --user=root --backup --target-dir=/data/backup_db

[00] 2022-01-17 10:49:29 Connecting to MySQL server host: localhost

[00] 2022-01-17 10:49:29 Using server version 10.5.13-MariabDB-1:10.5.13+maria~buster-1log
mariadb-backup based on MariaDB server 10.5.13-MariaDB debian-1linux-gnu (x86_64)

[00] 2022-01-17 10:49:29 uses posix_fadvise().

[00] 2022-01-17 10:49:29 cd to /var/lib/mysql/

[00] 2022-01-17 10:52:23 Writing backup-my.cnf

[00] 2022-01-17 10:52:23 .. .done
[00] 2022-01-17 10:52:23 Writing xtrabackup_info
[00] 2022-01-17 10:52:23 .. .done

[00] 2022-01-17 10:52:23 Redo log (from LSN 1462416712885 to 1462442558594) was copied.
[00] 2022-01-17 10:52:23 completed OK!

Creating local backup (2)

tree -L 1 /data/backup_db
/data/backup_db

— aria_log.00000001

— aria_log_control

—— backup-my.cnf

— db1l

— db2

— 1b_buffer_pool

—— l1bdatal

— 1b_logfile®

— mysql

—— performance_schema

— XxXtrabackup_binlog_info
—— Xtrabackup_checkpoints
—— Xtrabackup_info

Creating incremental local backup (1)

First incremental backup (from /data/backup_db):

mariadb-backup --user=root --backup \
--target-dir=/data/backup_db1l \
--incremental-basedir=/data/backup_db

Next incremental backup (from /data/backup_db1):

mariadb-backup --user=root --backup \
--target-dir=/data/backup_db2 \
--incremental-basedir=/data/backup_db1l

Creating incremental local backup (2)

And so on:

tree -L 1 /data
/data

backup_db
backup_dbl
backup_db2
backup_db3
backup_db4

E

backup_dbX

Restoring full backups (1)

1. prepare the backup

‘ # mariadb-backup --prepare --target-dir=/data/backup_db

2. stop MariaDB server

‘ # systemctl stop mariadb

3. remove datadir

mv /var/lib/mysql/ /var/1lib/mysqgl_old
mkdir /var/1lib/mysql

Restoring full backups (2)

4. move (--move-back) or copy (--copy-back) from backup

‘ # mariadb-backup --move-back --target-dir=/data/backup_db

5. fix rights

‘ # chown -R mysql:mysgl /var/lib/mysql

6. start MariaDB server

‘ # systemctl start mariadb

10

Restoring incrementals backups

The preparation step (1) needs an extra task to include all the incremental backups.

1. prepare the first full backup and include all increments (the order of incremental
backups inclusion is important):

marliadb-backup --prepare --target-dir=/data/backup_db

for dir in /data/backup_dbl /data/backup_db2 /data/backup_db3; do
mariadb-backup --prepare --target-dir=/data/backup_db \
--incremental-dir="%$dir"
done

Then you can apply the exact same step as for a normal backup (2, 3, 4, 5 and 6).

11

The --stream=xbstream option (1)

There are plenty of options available (--compress, --encrypted-backup , etc.), see:
mariadb-backup --help . Butinstead of using those, it's recommended to use
dedicated compression or encryption tools with the --stream=xbstream option.

For instance, you can compress the backup on the fly with gzip:

‘ # marliadb-backup --user=root --backup --stream=xbstream | gzip >mariadb.xb.gz

Uncompress:

‘ gunzip -c mariadb.xb.gz | mbstream -x

12

The --stream=xbstream option (2)

The same goes for encryption:

mariadb-backup --user=root --backup --stream=xbstream |
gpg -Cc --passphrase SECRET --batch --yes -o mariadb.xb.gpg

Decrypt:

gpg --decrypt --passphrase SECRET --batch --yes mariadb.xb.gpg
mbstream -Xx

13

Restic

Written in Go, Restic is a fast and secure backup program that supports a wide range
of storages (backends) https://restic.readthedocs.io/.

By coupling mariadb-backup with it, it becomes very easy to implement:

e incremental backups;
e remote storage;

e encryption.

14

https://restic.readthedocs.io/

Installation

You can download the latest stable release versions of Restic from the Restic release
page (https://github.com/restic/restic/releases/latest).

Note that there is a very useful self-update option:

sudo restic self-update

Via the package manager:

e Debian/Ubuntu

sudo apt-get install restic

e RedHat/Fedora

sudo dnf install restic

15

https://github.com/restic/restic/releases/latest

Local backup with Restic (1)

1. initiate the Restic repository:

export RESTIC_REPOSITORY="/data/backup_restic"
export RESTIC_PASSWORD="mypassword1243876123!!-_"
restic 1nit

created restic repository e45984e7 at /data/backup_restic

Please note that knowledge of your password 1s required to access

the repository. Losing your password means that your data 1is
irrecoverably lost.

16

Local backup with Restic (2)

Restic repository tree:

tree -L 1 backup_restic/
backup_restic/

—— config

— data

— 1index

— keys

— locks

—— snapshots

5 directories, 1 file

17

Local backup with Restic (3)

2. create the backup

mariadb-backup --user=root --backup --stream=xbstream 2>/data/mariadb-backup. log

repository e45984e7 opened successfully, password is correct
created new cache in /root/.cache/restic
no parent snapshot found, will read all files

Files: 1 new, 0 changed, 0 unmodified
Dirs: 0 new, 0 changed, 0 unmodified
Added to the repo: 61.762 GiB

processed 1 files, 63.062 GiB in 3:35
snapshot 6b2acceb saved

restic snapshots
repository e45984e7 opened successfully, password is correct
ID Time Host Tags Paths

1 snapshots

restic backup --stdin --stdin-filename mariadb.xb --tag MariaDB

18

Local backup with Restic (4)

3. incremental backup (same command as above!):

mariadb-backup --user=root --backup --stream=xbstream 2>/data/mariadb-backup.log | restic backup --stdin --stdin-filename mariadb.xb --tag MariaDB

repository e45984e7 opened successfully, password is correct
using parent snapshot 6b2acceb

Files: 0 new, 1 changed, 0 unmodified
Dirs: 0 new, 0 changed, 0 unmodified
Added to the repo: 2.156 GiB

processed 1 files, 63.017 GiB in 2:03
snapshot 718e9e02 saved

restic snapshots
repository e45984e7 opened successfully, password is correct

ID Time Host Tags Paths
6b2acceb 2022-01-18 12:52:16 hz-bbmi MariaDB /mariadb.xb
718e9e02 2022-01-18 12:58:44 hz-bbmi MariaDB /mariadb.xb

2 snapshots

Easy!

Error handling

Since --stream option streams backup files to STDOUT, the mariadb-backup log is
sent to STDERR. This is intentional (see: https://jira.percona.com/browse/PXB-1469).

That Is why the use of STDERR (2>/data/mariadb-backup.log) In the previous
command should be taken in consideration at the moment of handling eventual backup

errors.

20

https://jira.percona.com/browse/PXB-1469

Restore Local backup

Use restic snapshots to determine which snapshot you want to restore or use the
latest keyword (see: https://restic.readthedocs.io/en/stable/050 restore.html).

‘ # restic restore latest --target .

Un-serialize the backup with mbstream :

mkdir mariadb_recovery && cd mariadb_recovery
mbstream -x <../mariadb.xb

Prepare the recovery:

‘ # mariadb-backup --prepare --target-dir=.

21

https://restic.readthedocs.io/en/stable/050_restore.html

What about remote storage (Restic backends)?

SFTP

‘ # export RESTIC_REPOSITORY="sftp:100.64.200.20:/data/restic_backup"

S3 (AWS or Minio Server)

See: https://restic.readthedocs.io/en/latest/080 examples.html

export AWS_ACCESS_KEY_ID="AKIAJAJSLTZCAZA4SRI5Q"
export AWS_SECRET_ACCESS_KEY="LaJtZPoVvGbXsaD2LsxVvJZF/7LR14FhTOTK4gDQq"
export RESTIC_REPOSITORY="s3:https://s3.amazonaws.com/restic-demo"

See the full list of available backends:
https://restic.readthedocs.io/en/latest/030_preparing_a new_repo.html

22

https://restic.readthedocs.io/en/latest/080_examples.html
https://restic.readthedocs.io/en/latest/030_preparing_a_new_repo.html

Performance (1)

It's difficult to benchmark correctly mariadb-backup vs mariadb-backup + Restic.

This depends on various parameters:

e the load on the DB at the moment of the backup (delta of increments);

e network load and the bandwidth availability in the case of a remote storage
backup;

|10 disk available (if local storage);

e Restic adds various overheads (encryption, de-duplication, indexing, see
https://restic.readthedocs.io/en/latest/100_references.html).

23

https://restic.readthedocs.io/en/latest/100_references.html

Performance (2)

The following array shows a quick comparison of a local backup with mariadb-backup
and with mariadb-backup + Restic (DB backup size ~64GB):

type time first backup time incr backup (*)
mariadb-backup 119 s 44 s
mariadb-backup + Restic 219 s 132 s

(*). after same amount of time (DB is updated regularly)

24

Check your backups!

Example with Podman (or Docker).

In a terminal execute the following commands (mariadb_recovery contains the
restored datadir):

podman run -it -v ./mariadb_recovery:/var/lib/mysql docker.io/mariadb:10.5 bash
root@6ds5b6f121bb9:/# chown -R mysql:mysql /var/1lib/mysql

In a second terminal execute the following commands to start the mariadb server
(container id is the previous one):

podman exec -it -u mysqgl 6d5b6f121bb9 bash
mysql@6d5b6f121bb9:/$ export MARIADB_ROOT_PASSWORD="recover"
mysql@6d5b6f121bb9:/$ /usr/local/bin/docker-entrypoint.sh mysqgld

You can then connect to the DB from the first terminal and verify that the database
contains everything. o5

Tips

Automate recovery and check process: why not injecting your backups from Restic
snapshots in your staging environment every night?

Tag your backups snapshots (example --tag MariabB), this will help future retention
strategies.

Use the nice command if Restic takes too many resources (encryption, de-duplication
and indexing overhead):

mariadb-backup ... | nice -nl19 restic backup --stdin ...

Now that you know how to easily and quickly restore a full DB from scratch with your
backups, why not creating a secondary node and handle your backups from that node.
Note that contrary to mariadb-dump (logical backup), there is no lock during the backup
If you use InnoDB so this is less important.

26

Links

Mariabackup doc:
https://mariadb.com/kb/en/mariabackup/

Report mariadb-backup issues:
https://jira.mariadb.org

Restic doc:
https://restic.readthedocs.io/

Restic crypthography analysis (by Filippo Valsorda):
https://blog.filippo.io/restic-cryptography/

Use Borg instead of Restic (not tested)?
https://borgbackup.readthedocs.io/en/stable/usage/create.ntml#reading-from-stdin

27

https://mariadb.com/kb/en/mariabackup/
https://jira.mariadb.org/
https://restic.readthedocs.io/
https://blog.filippo.io/restic-cryptography/
https://borgbackup.readthedocs.io/en/stable/usage/create.html#reading-from-stdin

Questions?

e faustin@mariadb.org

e https://mariadb.org/about/#faustin-lammler

28

mailto:faustin@mariadb.org
https://mariadb.org/about/#faustin-lammler

Sponsors

@Tencent Cloud

(=) Alibaba Cloud

== Microsoft

D VISMA

JMCIHG DB

AUTOMATTIC

servicenow

BDBS

29

