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Abstract—The practice of backporting aims to bring the benefits of a bug or vulnerability fix from a higher to a lower release of a
software package. When such a package adheres to semantic versioning, backports can be recognised as new releases in a lower
major train. This is particularly useful in case a substantial number of software packages continues to depend on that lower major train.
In this article, we study the backporting practices in four popular package distributions, namely Cargo, npm, Packagist and RubyGems.
We observe that many dependent packages could benefit from backports provided by their dependencies. In particular, we find that a
majority of security vulnerabilities affect more than one major train but are only fixed in the highest one, letting thousands of dependent
packages exposed to the vulnerability. Despite that, we find that backporting updates is quite infrequent, and mostly practised by
long-lived and more active packages for a variety of reasons.
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1 INTRODUCTION

Backporting refers to the process of applying a software
update, typically a patch that fixes a bug or security vulnera-
bility, to a lower version of the software. As stated by Bogart
et al. [1], “making bug fixes to outdated versions of code, or even
backporting new features, can be helpful for users who cannot up-
date to the cutting-edge versions for some reason.” Backporting
patches therefore enables users of lower releases to benefit
from more recent fixes and features.

This article studies the practice of backporting in the
context of distributions of reusable software libraries that
form large and evolving package dependency networks [2].
In this context, backports become relevant for packages that
depend on other packages, especially when those depen-
dent packages do not refer to the highest available version
of the required package. Depending on outdated packages
has been shown to be a prevalent and well-studied problem,
as it brings about an increased risk of bugs and security
vulnerabilities [3], [4], [5], [6], [7], [8].

Because it is so common for packages to have out-
dated dependencies, we aim to gain empirical insights into
how backporting is used in package dependency networks.
Backporting requires additional effort from the package
producer, as it entails transplanting important bug and
vulnerability fixes to earlier versions. In contrast, dependent
packages can benefit from backported fixes without having
to upgrade to a higher major or minor version. This is
especially useful when upgrading is not feasible due to
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known version incompatibilities or because it would incur
risks or involve too much effort.

We are the first to carry out an extensive empirical
study into backporting practices and compare these prac-
tices across four popular software package distributions that
are known to adhere to semantic versioning: Cargo for the
Rust programming language, npm for JavaScript, Packagist
for PHP and RubyGems for the Ruby programming language.
More concretely, we study the following research questions
for the dependency networks of those distributions:

RQ1 How outdated are dependent packages? This initial ques-
tion allows us to understand if there is a real need for
backporting. This would not be the case if all dependent
packages are relying on the highest version of their
required packages.

RQ2 How many major versions of a package are used by its
dependents? If lower major versions of a required pack-
age are still being used actively, the use of backporting
becomes more relevant for package producers, in order
to continue to support dependents relying on those
lower major versions.

RQ3 How prevalent are backports? This question aims to un-
derstand how many required packages practice back-
porting and how many of their dependents benefit from
this practice.

RQ4 Do packages with backports exhibit different characteris-
tics? Since not all packages practice backporting, this
question aims to characterise those packages that do.

RQ5 How long do lower major releases continue to be supported?
This question aims to assess whether lower major re-
leases continue to benefit from backporting practices
for extended periods of time.

RQ6 To which extent are security fixes being backported? This
question aims to quantify one of the main goals of
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backporting, namely to allow outdated packages to
continue to benefit from (backported) security updates.

The remainder of this article is structured as follows.
Section 2 presents related work. Section 3 describes the
research method followed, including the terminology that
will be used, and the data extraction and preprocessing
phase. Section 4 addresses each of the research questions.
Section 5 presents the threats to validity of our study. Sec-
tion 6 discusses the consequences of our research findings
and the recommendations that can be made based on these
findings. Finally, Section 7 concludes the article.

2 RELATED WORK

Backporting has primarily been studied in the context of
the Linux operating system. Tian et al. [9] proposed to
automatically identify bug fixing patches in the Linux kernel
in order to apply them to older long term releases. Ray et
al. [10] proposed to detect and characterize porting errors
to help developers avoid them. Rodriguez et al. [11] studied
backporting of device drivers for older OS versions, and
presented a backporting strategy involving the use of a
backport library and of the program transformation tool
Coccinelle to automatically generate code to be backported.
Thung et al. [12] proposed an automatic recommendation
system to guide the selection of candidate code changes
to be backported. Shariffdeen et al. [13] proposed a patch
backporting tool called FixMorph to automate the transfer
of patches from the mainline version of the Linux kernel
into older stable versions.

In 2017, Christopher Bogart et al. reported on a survey
with more than 2,000 developers to study the values and
practices across 18 different software ecosystems [14], [1].
One of these questions was “When working on (my package), I
spend extra time backporting changes, i.e., making similar fixes to
prior releases of the code, for backward compatibility.” The results
that they reported for the 4 package distributions considered
in this paper are shown in Figure 1. For each distribution a
majority of developers reports that they do not spend extra
time to backport changes in their packages, suggesting that
backporting practices are still underexploited.
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Fig. 1: Do developers spend time on backporting changes?

Also related is the work on patch transplantation and
patch porting, which consists of taking patches that re-
pair software defects or software vulnerabilities in one
project, and transplanting or porting this patch to forked

projects [15] or other similar projects [16]. This line of
research is very interesting and relevant in its own right,
and automated patch transplantation techniques are likely
to be useful for backporting patches as well.

Another important and related line of research focuses
on package outdatedness, referring to the extent to which
a package is not using the most up-to-date versions of
the packages on which it depends (either directly or tran-
sitively). Backporting only becomes relevant if package
dependencies are outdated, and especially if the declared
dependency is one or more major versions behind. Outdat-
edness makes packages more vulnerable to security issues,
even if there are known patches for these issues. Cox et
al. [17] introduced a metric of dependency freshness to
study the relationship between outdated dependencies and
security vulnerabilities. Mirhosseini [18] studied the use
of automated pull requests to update outdated software
dependencies. Gonzalez-Barahona et al. [19], [4], [7], [8]
introduced the notion of technical lag to quantify the degree
of outdatedness of packages, along different dimensions,
including time lag, version lag and vulnerability lag. Wang
et al. [6] studied the relation between outdatedness (update
delay) and security risks in 13,565 third-party libraries of
806 Java projects. Lauinger et al. [3] studied the use of vul-
nerable and outdated JavaScript libraries in 133k websites,
and observed that transitive libraries are more likely to
be vulnerable. Zimmermann et al. [5] found evidence of
single points of failure in the npm dependency network
of JavaScript packages, containing unmaintained packages
with security vulnerabilities that transitively impact a large
number of packages.

Research on semantic versioning is also related. Semantic
versioning introduces a set of simple rules that suggest how
to assign version numbers to package updates to inform de-
velopers about potentially breaking changes. Raemaekers et
al. [20] studied the relation between semantic versioning
and the impact of breaking changes in the Maven depen-
dency network of Java packages. Similarly, Decan et al. [21]
studied semantic versioning practices in 4 other package
dependency networks, by analysing the dependency con-
straints used when declaring package dependencies. Opde-
beeck et al. [22] studied the practice of semantic versioning
in the Ansible Galaxy ecosystem of Infrastructure-as-Code
libraries.

3 RESEARCH METHOD

3.1 Terminology
This section introduces the terminology used throughout
this article. All main terms are highlighted in boldface.

Package distributions (such as Cargo, npm, Packagist and
RubyGems) are collections of (typically open source) soft-
ware packages, distributed through some package manager.
Each package is developed and maintained by a (team of)
developer(s) whom we refer to as the package producer.
Each package has one or more releases that are denoted
by a unique version number. New releases of a package
are called package updates. The version number reflects the
sequential order of all releases of a package.

Package releases can declare dependencies on other
packages. In this way, the collection of all package releases
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contained in a package distribution forms a package depen-
dency network. If package release R depends on package
P , R is called a dependent, while P is called a required
package. In the context of this article, we only consider a
single snapshot of each package distribution, containing all
packages and their entire release history available until the
snapshot date. By abuse of terminology we declare a package
to be dependent on P if its latest available release in this
snapshot depends on P .

A dependent can specify a dependency constraint to
describe which releases of P are allowed to be selected
for installation. Such constraints express a version range.
For example, constraint < 2.0.0 defines the version range
[0.0.0, 2.0.0[, signifying that any release below version 2.0.0
of the required package is allowed to be installed. In order
to benefit from bug fixes and newly added functionalities,
producers of dependent packages need to keep their depen-
dencies up to date. This may require significant effort, es-
pecially in case the newer releases of a dependency include
backward incompatible changes [23].

Semantic versioning, hereafter abbreviated as semver1,
proposes a multi-component version numbering scheme
major.minor.patch[-tag] to specify the type of changes that
have been made in a package update. Backward incom-
patible changes require an increment of the major version
component, important backward compatible changes (e.g.,
adding new functionality that does not affect existing de-
pendents) require an increment of the minor component,
and backward compatible bug fixes require an increment of
the patch component. Combining semver with dependency
constraints enables producers of dependent packages to
restrict the version range of a required package to those
releases that are expected to be backward compatible [21].

To each major version of a package we can associate a
corresponding major train, being the ordered sequence of
all releases of that package that have the same major version
component.2 We will consider a major train of a package
to be higher (respectively, lower) than another major train
if the corresponding major version component is higher
(respectively, lower).

Backporting refers to the process of taking a minor or
patch update applied in a higher major train, and applying
this update (possibly after some necessary rework) to one or
more lower major trains. The original update will be called
the backported update, and the one applied to the lower
train will be called a backport. Figure 2 visually illustrates
this backporting process: patch update 2.1.1 fixes a vulnera-
bility discovered in release 2.1.0. Since the vulnerability also
affects release 1.3.0, the fix is backported to major train 1
through patch update 1.3.1. Similarly, patch update 3.1.1
fixes a vulnerability discovered in release 3.1.0, and this fix
is backported to the two lower major trains 1 and 2 through
patch updates 1.3.2 and 2.2.1, respectively.

3.2 Data Extraction
For our empirical analysis we rely on version 1.6.0 of the
libraries.io dataset, released in January 2020, which contains

1. See https://semver.org
2. We use the term “major train” by analogy with the notion of

“release train”. Some authors have used “major branch” instead, which
could be confused more easily with the notion of git branches.
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Fig. 2: Examples of backporting security vulnerability
patches from the highest major train to lower ones.

dependency metadata for 33 distinct open source package
distributions [24]. We focus on four of the largest package
distributions for which we already studied the practice of
semantic versioning and dependency constraints in earlier
work [21]: Cargo for the Rust programming language, npm
for JavaScript, Packagist for PHP and RubyGems for Ruby.

The dataset contains package metadata, including all
releases of the package, their version number, their release
date, and their dependencies. For each dependency, there
is information about the required package, the dependency
constraint, and the scope of the dependency (e.g., whether
it is needed to execute, develop or test the package). We
excluded dependencies that are only needed to test or
develop a package because not all considered package dis-
tributions make use of them, and not every package de-
clares a complete and reliable list of such dependencies. We
therefore consider only those dependencies that are required
to execute the package, and that hence more accurately
reflect what is needed to actually use the package. For
each package release, we consider only dependencies to
other packages within the same distribution, i.e., we ignore
dependencies targeting external sources (e.g., websites or git
repositories).

The four considered package distributions rely on a dif-
ferent syntax for expressing dependency constraints on the
range of releases that can be accepted by a declared package
dependency. We converted those constraints to a uniform
version range notation [25]. To do so, we wrote a parser for
each package distribution. Those parsers were able to cope
with 99.4% of all considered dependency constraints: 100%
for Cargo, 99.6% for npm, 97.7% for Packagist, and 94.3% for
RubyGems. The remaining dependencies, i.e., those that were
not syntactically correct, were excluded from the dataset.

Since our goal is to study backports, we focus on ac-
tive packages by only considering required and dependent
packages that have been updated at least once in the last
12 months. In order to have sufficient information to study
the impact of backported updates on dependents, we only
consider required packages having at least 5 dependents in
the latest considered snapshot of each package distribution,
together with all dependents of these packages. To do so,
we rely on the dependency metadata specified in the latest
available release of each package in the dataset. We exclude
packages for which the release dates of its major versions
do not follow a chronological order (e.g., a major version
x released before major version y < x). This usually cor-
responds to packages whose releases were imported all at
once in the package distribution, leading their release dates
to correspond to the import date and not to their actual
release date. We found respectively 5, 363, 88 and 63 of such

https://semver.org
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packages for Cargo, npm, Packagist and RubyGems.
At the end of this data filtering phase, the curated dataset

consists of 19,365 required packages (and their entire release
history), and of the latest release of the 299,164 packages
that depend on them. Table 1 compares the initial dataset
with the curated one, broken down per considered package
distribution. From this table, one can derive that ≥ 5 de-
pendents of active required packages roughly corresponds
to 20% packages in each package distribution (to be precise:
19% for Cargo, 20% for npm, 17% for Packagist and 22% for
RubyGems).

4 RESEARCH QUESTIONS

This section aims to answer the research questions that were
introduced in Section 1. The code to replicate the analysis is
available on https://doi.org/10.5281/zenodo.5055500.

4.1 How outdated are dependent packages?

In previous work [21] we studied the adherence to semver in
the four considered package distributions, by analysing the
dependency constraints used by package releases in their
respective dependency networks. We observed that the large
majority of dependency constraints allow patch and minor
updates to be installed automatically, and that this trend has
increased over time.

While the above observation implies that most of the
dependents rely on the highest patch and minor updates
within a major train, this does not mean that they make use
of the highest major train. Therefore we identified, for each
dependent, the highest release of the required package that
could be accepted by the dependency constraint. We verified
if this release corresponds to the highest available release in
the highest available major train.

Figure 3 shows the proportion of dependents that are
up-to-date (i.e., they rely on the highest available release);
that depend on a lower patch or a lower minor release
within the highest major train; or that depend on a lower
major train. While most dependents are up-to-date (ranging
from 61.5% for npm to 81.8% for RubyGems), there remains
a non-negligible proportion (ranging from 5.7% for Cargo to
27.7% for npm) of dependents that still rely on a lower major
train. This is the most striking for Packagist and npm, with
respectively 24.6% and 27.7% of their dependents relying on
a lower major train. This can be an issue since discovered
bugs and security issues are typically fixed in the highest
major train. In order to allow dependents to benefit from
those fixes, one would need to adopt a backporting strategy,
which will be the focus of RQ3 and RQ4.

Focusing on those dependent packages that rely on some
lower major train (corresponding to the red bars in Figure 3),
we analysed the proportion of dependents in function of
the number of major trains they missed. Table 2 reports on
these proportions. Assuming that M is the highest available
major train, in the large majority of cases (69.4% to 93.7%),
dependents rely on releases belonging to the immediately
preceding major train M-1. Still, a non-negligible proportion
of packages (up to as many as 20% for npm) depend on re-
leases that are two major trains behind (M-2). Dependencies
are rarely three or more major trains behind (between 1.5%
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Fig. 3: Proportion of dependent packages relying on the
highest available release, a lower patch, a lower minor or
a lower major train.

for Packagist up to 10.6% for npm). The deviating behaviour
for npm can be explained by the fact that many npm package
producers have a tendency to create new major releases
often. This might be due to a stricter adherence to semantic
versioning [21].3

A majority of dependent packages are up-to-date in
the considered package distributions. Still, a non-
negligible proportion depends on a lower major train.
In Packagist and npm this happens in roughly 1 out
of 4 cases. In npm, more than 3 out of 10 dependents
on a lower major train are even several major trains
behind.

4.2 How many major versions of a package are used by
its dependents?

FromRQ1 we observed that many dependents still rely on a
lower major train of the required package. In order to assess
the potential and actual use of backporting practices, we
first need to quantify, for each required package, how many
major trains exist and how many of those are still used by its
dependents. The more major releases a dependent is behind,
the more likely that it will be unable to benefit from bug and
security fixes, and the harder it will become to upgrade to
the most recent major train. Conversely, from the required
package point of view, the more of its dependents still rely
on a lower major train, the more it becomes important to
adopt a backporting strategy or to incentivise its dependents
to upgrade to the highest major train.

Figure 4 shows the proportion of required packages in
function of their number of available major trains, regard-
less of whether these major trains are actually used by some
dependents. Except for Cargo, we observe that more than
half of all required packages in each considered distribution
have more than one major train, and between 31% and 36%
even have 3 or more available major trains. In Cargo, the
large majority of all required packages (85%) have a single
major train, which can be explained by the fact that the
overwhelming majority of Cargo packages (more than 9 out
of 10) only have releases with major version 0 [26].

3. By adhering to semantic versioning, any backward incompatible
change imposes the creation of a new major version.

https://doi.org/10.5281/zenodo.5055500
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TABLE 1: Dataset characteristics

initial dataset Cargo npm Packagist RubyGems total
all packages 34,769 1,217,677 180,094 154,998 1,587,538

active packages 19,433 430,976 58,620 18,791 527,820
active packages with ≥ 1 dependent 6,248 78,395 13,949 3,313 101,905
active packages with ≥ 5 dependents 1,190 15,644 2,335 715 19,884

curated dataset Cargo npm Packagist RubyGems total
active packages with ≥ 5 dependents 1,185 15,281 2,247 652 19,365

releases of these required packages 26,185 570,676 100,870 35,264 732,995
dependents of these required packages 13,143 242,618 35,488 7,915 299,164

dependencies for these dependent packages 59,814 1,021,843 89,667 15,066 1,186,390

TABLE 2: Proportion of outdated dependent packages rely-
ing on some lower major train. Notation M-n indicates how
many major trains n the dependent is behind.

distribution M-1 M-2 M-3 M-≥ 4
Cargo 93.7% 4% 1.1% 1.2%
npm 69.4% 20% 5.9% 4.7%

Packagist 89.1% 9.5% 1.3% 0.2%
RubyGems 82.4% 12.8% 3.5% 1.3%
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When restricting ourselves to only those major trains
of required packages that are actually used by dependent
packages, we obtain the proportions shown in Figure 5. To
prevent the analysis to be biased by major trains used by
a negligible fraction of the dependents only, we counted for
each required package the minimum number of major trains
needed to capture 90% of its dependents. We also limited the
analysis to required packages having at least two major trains
since dependent packages can only use a single major train
if it is the only available one. We observe that between 37%
(for RubyGems) and 51% (for npm) of the required packages
with multiple major trains have more than one of these
trains being used by most of their dependent packages.

Except for Cargo, the majority of required packages
in all package distributions have several major trains.
Dependents frequently use releases (of required pack-
ages) that do not belong to the highest major train.
This highlights the need for producers of required
packages to support earlier major trains, since they
continue to remain actively used.
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4.3 How prevalent are backports?
Given the need to support dependents on lower major trains
(cf. RQ2), RQ3 aims to analyse the prevalence of backports
(as defined in Section 3.1), by computing as a proxy any
new release that is applied to a lower major train. This proxy
quantifies the extent to which package producers are still
actively maintaining lower major trains, and it can be seen
as an upper bound on the actual number of backports one
could expect to find.4 To compute this we compared the
chronological order of releases with the ordering induced
by their version numbering. To illustrate the idea, reconsider
the example of Figure 2: release 1.3.1 is a patch of 1.3.0. Since
it was released after patch release 2.1.1 belonging to a higher
major train, we consider 1.3.1 to be a backport.

TABLE 3: Backports and packages with backports.

distribution backports packages
Cargo 149 21 1.7%
npm 6,425 1,010 6.6%

Packagist 10,886 457 20.3%
RubyGems 2,036 83 12.7%

total 19,496 1,571 8.1%

Table 3 reports on the number and proportion of pack-
ages with backports, and the number of such backports in
the considered snapshot of the four package distributions.
Overall, we found nearly 20K backports in around 1.5K
distinct packages. We observe that only a small proportion
of packages in Cargo (1.7%) and, to a lesser extent, in npm
(6.6%) have backports. On the other hand, one out of five

4. The threats to construct validity of using this proxy are discussed
in Section 5.
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packages in Packagist have backports. These proportions are
considerably lower than the proportions of developers that
agree that time is being spent on backporting changes, as
shown in Figure 1. Relative to the number of packages that
have the opportunity for backporting (i.e., those with at
least two major trains), the proportions of packages with
backports are 11.5%, 11.4%, 35.9% and 20%, respectively
for Cargo, npm, Packagist and RubyGems. This shows that
lower major trains continue to remain maintained in all four
distributions, but only for a minority of packages. RQ4 will
focus on the characteristics of those packages.

Compared to the three other package distributions, Pack-
agist has a high number of backports, both proportionally
and in absolute numbers. We discovered an important in-
crease in the number of backports in early 2016. This was an
immediate consequence of the release of PHP 7 in December
2015, which is noted for its backward incompatibility. It
forced popular packages to maintain two major release
trains at the same time, in order to facilitate the migration
process towards PHP 7, without forcing dependents to
move to PHP 7 from one day to another.

We observed in Table 2 (see RQ2) that many required
packages have multiple major trains being used by their
dependents. If a required package backports some of its
updates, the question arises which of these lower trains
are targeted by the backport. Is it only the immediately
preceding one, or will multiple lower trains continue to be
maintained? Consider for example Figure 2, where package
updates in the highest major train 3 have the potential to be
backported into lower major trains 1 and 2. This is indeed
the case for release 3.1.1, which is effectively backported to
releases 1.3.2 and 2.2.1, respectively.

We quantified this phenomenon by identifying, for each
required package that backported some of its updates, how
many major trains were available, and which major train(s)
received the backport. Figure 6 shows the proportion of
required packages with backports, in function of the number
of available major trains and the number of major trains that
actually received a backport.
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Fig. 6: Proportion of packages with backports in function
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We observe that most packages are backported to a sin-
gle major train, even if multiple lower trains are available.
The next question that naturally arises is which major train
tends to be targeted by backports. Intuitively, we would
expect this to be the major train that immediately precedes

the highest available one. We could confirm this intuition,
since we found that 86% of all backports target the previous
major train, and 11.9% of all backports target the major train
before that one.

Incidentally, it is interesting to note that major train 0
still receives 4.2% of all backports, even though packages
with major version 0 are meant to be for initial develop-
ment according to the semver policy. This phenomenon
can be attributed almost exclusively to Cargo, which has
many more 0.y.z releases than any of the other studied
distributions [26]. As a consequence 83.9% of all backports
in Cargo are actually from major train 1 to major train 0
(compared to only 8.3% in npm, 1.2% in Packagist and 1.5%
in RubyGems).

Even if a required package practices backporting, there
is no guarantee that its dependents actually benefit from
these backports. While it is likely that they do, it could be
the case that the dependency constraints declared by the
dependents prevent them from accepting the backported
patch or minor release (e.g., in the case of a strict constraint).
We checked this for all dependents relying on a major train
that received a backport. Fortunately a large majority of
these dependent packages, ranging from 81.9% in RubyGems
to 96.4% in Cargo, do accept the backports to be installed.

Backporting is infrequently practised. Only a minority
of package producers continues to maintain lower
major trains. Those that do, tend to maintain only the
immediately preceding major train. The large major-
ity of dependents that can potentially benefit from
backporting actually do. Packagist has considerably
more backports than the other studied distributions.
The backward incompatible release of PHP 7 seems
to have played an important role in this observed
difference. Cargo has the specificity of backporting
updates to major train 0.

4.4 Do packages with backports exhibit different char-
acteristics?

RQ3 revealed that backporting is practised by only a mi-
nority of packages. RQ4 aims to assess if those packages
exhibit characteristics that differ from the other packages
in each considered distribution. We expect backporting to
be mainly practised by more mature, active and popular
packages (i.e., used by more dependents).

As a first characteristic we considered the package age,
computed as the number of days between its first and latest
available releases. The age of a package might be correlated
with the practice of backporting, simply because longer-
lived packages had more time to seize the opportunity
to backport. Figure 7 shows the distributions of package
age, grouped by package distribution, and distinguishing
between packages with and without backports. We observe
that packages with backports tend to be longer-lived. This
observation is statistically confirmed (p < 0.01) by Mann-
Whitney-U tests [27] after controlling for family-wise error
rate with the Bonferroni-Holm method [28]. Following the
interpretation by Romano et al. [29], the effect size (mea-
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Fig. 7: Distribution of package age for packages with and
without backports.
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Fig. 8: Distribution of package release frequency for packages
with and without backports.

sured using Cliff’s delta [30]) is medium (0.366 ≤ |d| ≤
0.466), and even large for Packagist (|d| = 0.487).

The number of releases of a package is a related character-
istic for which we expect to see a difference, as it provides
another means to increase the number of opportunities to
practice backporting. One might intuitively expect the age
and number of releases of a package to be correlated. To
verify this intuition, we computed Pearson’s r and Spear-
man’s ρ correlation coefficients between these two charac-
teristics. We obtained r = 0.18 indicating there is no linear
correlation, and ρ = 0.41 indicating a moderate monotonic
correlation. This observation implies that, in general, longer-
lived packages do not necessarily release more versions. For
this metric, we could also statistically confirm by Mann-
Whitney-U tests, that packages with backports tend to have
a higher number of releases. The effect size was large for all
package distributions (0.547 ≤ |d| ≤ 0.659).

We also hypothesised that packages with backports have
a higher activity rate, measured as package release frequency
(i.e., the ratio of number of releases against package age). To
prevent packages from having their release frequency “arti-
ficially” increased by the presence of backports, we counted
a backport and the corresponding backported release as a
single release. Figure 8 shows the distributions of package
release frequency, and Mann-Whitney-U tests indeed con-
firmed that this frequency is statistically higher for packages
with backports. The effect size is small (0.150 ≤ |d| ≤ 0.280).

As another distinguishing characteristic, we posit that
packages with more dependents are more likely to prac-
tice backporting since backports benefit a larger audience.
Conversely, packages with backports are more likely to
have more dependents since depending on them allows to

Cargo npm Packagist RubyGems
100

101

102

103

104

105

nu
m

be
r o

f
de

pe
nd

en
t p

ac
ka

ge
s

without backports with backports

Fig. 9: Distribution of number of dependents for packages with
and without backports.

benefit from bug or security fixes even in lower major trains.
Figure 9 shows the distributions of number of dependents
of a package, grouped by package distribution, and distin-
guishing between packages with and without backports. We
visually observe that packages with backports have a higher
number of dependents. This observation is statistically con-
firmed by Mann-Whitney-U tests. The effect size is small for
all package dependency networks (0.182 ≤ |d| ≤ 0.328).

The characteristics of packages with backports are
different from those without backports. In particular,
packages with backports tend to have a longer life-
time, more releases, a higher release frequency and
more dependents.

4.5 How long do lower major releases continue to be
supported?

In an ideal world, whenever a new major release is cre-
ated, all dependents would upgrade immediately to this
major release, so that only the highest major train needs
to be maintained. In practice, however, many dependents
continue to rely on releases from a lower major train for
a variety of reasons. Because of this, package producers
may continue to support lower major trains by backporting
updates to them.

We posit that backporting extends the lifetime of lower
major trains, where we define the lifetime of a major train as
the time between its first and last chronological release. For
example, in Figure 2 the lifetime of major train 1 would
be the time difference between the release date of 1.3.2
and 1.0.0. By backporting release updates to a lower major
train, it continues to be maintained over extended periods
of time. However, that does not automatically imply that
major trains with backports have a longer lifetime than the
ones without.

Figure 10 shows the distributions of the lifetime of lower
major trains, distinguishing between those major trains that
received backports and those that did not. Since we found in
Section 4.4 that packages without backport exhibit a differ-
ent release frequency than packages with, and to avoid the
analysis to be biased by their different release frequencies,
only major trains of packages that backported at least one
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Fig. 11: Proportion of packages in function of the number
of major trains used by dependents, distinguishing between
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update are considered for the analysis. 5

We observe that lower major trains that received back-
ports indeed have a longer lifetime. This observation was
statistically confirmed by Mann-Whitney-U tests, with a
large effect size (0.660 ≤ |d| ≤ 0.783) for all package
distributions. Comparing the median values in Figure 10 we
observe that major trains that receive backports have their
lifetime extended by a factor 11 for Cargo (11.3 vs 1 month),
a factor 6.4 for npm (14.5 vs 2.3 months), a factor 4.7 for
Packagist (26.1 vs 5.6 months), and a factor 4.2 for RubyGems
(29.2 vs 7 months).

Thanks to this extended maintenance support of previ-
ous major trains, dependents can continue to rely on those
trains and still benefit from the latest bug and security fixes.
As a consequence, we expect packages with backports to
have more major trains in use by their dependents.

Figure 11 shows the proportion of packages in function
of the number of major trains used by the population of
their dependents, distinguishing between packages with
and without backports. To make a fair comparison, required
packages having only one major train were excluded from
this analysis. The figure indeed reveals that packages with
backports have a higher number of major trains used by
their dependents: 75% of packages with backports have
two major trains being used by their dependents while this
proportion is only 57% for packages without backports. This
observation was again statistically confirmed using Mann-

5. When redoing the same analysis by also including packages with
only one major train, we reached similar conclusions.

Whitney-U tests. The effect was small for npm and RubyGems
(0.226 ≤ |d| ≤ 0.237), and medium for Cargo and Packagist
(0.340 ≤ |d| ≤ 0.428).

Major trains that receive backports are maintained for
longer periods of time (ranging from a factor 4.2 for
RubyGems to as high as a factor 11 for Cargo). Packages
with backports have more major trains used by their
dependents.

4.6 To which extent are security fixes being back-
ported?

One of the benefits of doing backports is to fix as early
as possible security vulnerabilities that can be exploited to
abuse systems and environments in which these systems
are deployed. Indeed, dependents relying on a lower major
train can benefit from these security fixes through back-
ports, without having to go through the potentially time-
consuming adoption of a newer major release.

RQ6 therefore aims to identify the extent to which
security vulnerabilities affect several major trains of the
packages in which they occur, the extent to which lower
major trains are receiving security fixes, and the extent to
which dependents can benefit from these fixes. To motivate
this question, consider two concrete vulnerabilities6 in two
very popular npm packages, bootstrap and lodash:

1) A medium severity cross-site scripting
vulnerability in bootstrap affects versions
<3.4.0 || >=4.0.0 <4.1.2. The vulnerability
was fixed in patch update 4.1.2 and the fix was
cherry-picked and backported into minor release 3.4.0
belonging to major train 3. In the considered snapshot,
bootstrap is used by 2,384 dependents, of which 372
rely on major train 3 to which the vulnerability fix
was backported. As a consequence, even outdated
dependents benefitted from the fix by allowing
backward compatible minor updates for their affected
dependencies, without the need to upgrade to the new,
backward incompatible, major version 4.

2) A high severity vulnerability of type prototype pollution
was reported for lodash. The vulnerability was fixed in
patch 4.17.12 and was reported to affect all previous
releases, hence leaving the four lower major trains vul-
nerable.7 In the considered snapshot, lodash is used by
26,073 dependents, and 401 of them still rely on lower
major trains that do not have any fix for the vulnerability.
Those outdated dependents would need to upgrade their
dependencies to a new major version, and are likely
to encounter backward incompatible changes that may
require significant effort to deal with. For instance, the
changelog of version 4.0.0 lists over 50 incompatible
changes.

6. See https://snyk.io/vuln/SNYK-JS-BOOTSTRAP-11109 and
https://snyk.io/vuln/SNYK-JS-LODASH-450202

7. The vulnerability database does not report a lower bound on the
affected versions, so this is likely to be an over-approximation to remain
on the safe side.

https://snyk.io/vuln/SNYK-JS-BOOTSTRAP-11109
https://snyk.io/vuln/SNYK-JS-LODASH-450202
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To study RQ6 we rely on a dataset of vulnerability
reports kindly provided by Snyk.io on 12 April 2020.8 Since
the provided dataset does not contain vulnerability reports
for Cargo and Packagist, the analysis for RQ6 necessarily
restricts itself to npm and RubyGems only. This dataset con-
tains 2,874 vulnerability reports in total (of which 2,188 for
npm and 686 for RubyGems) affecting 2,034 distinct packages
(1,700 from npm and 334 from RubyGems). Each vulnerability
report contains information about the affected package, the
releases being affected by the vulnerability, and the releases
in which the vulnerability was fixed.

Since the focus is on backporting security fixes, we
restrict the list of vulnerabilities to those having been fixed.
This results in 834 vulnerabilities with known fixes (541 for
npm and 293 for RubyGems) affecting 383 distinct packages
(292 for npm and 91 for RubyGems). All of these packages
have dependents that can potentially be affected by the
vulnerability. This concerns 108,008 dependents for npm
(out of the 242,618 dependent npm packages in our curated
dataset) and 7,234 dependents for RubyGems (out of the
7,915 dependent RubyGems packages in our curated dataset).

A given vulnerability may affect one or several major
trains. When a vulnerability affects the highest major train,
it can be fixed either by releasing a new patch or a minor
release, or by releasing a new major version including the
fix (i.e., starting a new major train). When a vulnerability
also affects lower major trains, the producers of the affected
package can decide to backport the fix to these lower major
trains as well.

Based on the information provided in the vulnerability
reports, we counted how many major trains were affected
by the vulnerability, and how many major trains benefited
from a security fix. Figure 12 shows the proportion of
vulnerabilities in function of the number of affected major
trains and the number of fixed major trains.
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Fig. 12: Proportion of vulnerabilities in function of the
number of affected and number of fixed major trains.

We observe that 318 vulnerabilities (213 for npm and 105
for RubyGems) affect a single major train only. This corre-
sponds to 38.2% of all vulnerabilities, of which 35.3% have
a fix available. The large majority of those fixes (90.9% of
them, accounting for 289 vulnerabilities) were released as
a patch or a minor release in the current major train. The
remaining 29 vulnerabilities were fixed by creating a new
major release (e.g., a vulnerability affecting 1.9.0 that is fixed

8. The dataset being subject to a non-disclosure agreement, it is not
included in the replication package.

in 2.0.0). Amongst them, only 5 fixes were backported to
the previous affected major train while in the remaining 24
cases, the previous major train did not benefit from a fix,
leading their number of fixed major trains to be zero.

Let us now focus on the remaining 516 vulnerabilities
(61.8% of which 328 for npm an 188 for RubyGems) that affect
more than one major train. Surprisingly, 83.9% of them (427)
were fixed in only one major train, leaving the other affected
major trains vulnerable. On average, three major trains were
affected while the security fix was deployed in only one
major train. All of these vulnerabilities were fixed in the
highest major train.

Given that not all affected lower major trains actually
benefit from a fix, it may be risky for dependents to rely on
these major trains. To quantify this risk, we identified for
each dependent whether it depends on a major train that
was affected by one or more vulnerabilities, and whether it
has benefited from a security fix applied to that major train.

As we want to understand the practice and effect of
backporting security fixes, we only consider dependents
relying on one of the 261 affected lower major trains (i.e., we
excluded dependents relying on the highest major train). We
found 6,274 of such dependents out of a total of 97,402 (i.e.,
6.4%). These dependents have a total of 7,219 dependencies
on one of the 150 packages affected by a vulnerability. They
rely on a total of 438 affected major trains (if a major train
is affected by multiple vulnerabilities, it is counted more
then once, explaining why this number exceeds 261), and
most of these major trains (84%) did not benefit from a
backported fix. As a consequence, only 2,023 dependents
(32.4%) rely on a lower major train that benefited from at
least one backported fix, while 5,056 dependents (80.6%) are
still exposed to the vulnerability and would benefit from a
such a backport.9

A majority of the security vulnerabilities for npm and
RubyGems packages affect more than one major train
but are only fixed in the highest major train, even if
the lower trains are also marked as vulnerable. This is
worrisome, because thousands of dependents still rely
on a lower major train that is known to be exposed to
a vulnerability even when a fix is available in a higher
major version.

This calls for an increased awareness of the need
for backporting in package dependency networks,
especially for producers of popular packages, whose
vulnerabilities may potentially affect thousands of
dependents.

5 THREATS TO VALIDITY

We follow the structure recommended by Wohlin et al. [31]
to discuss the main threats to validity of our research, and
we provide some suggestions for future work based on this
discussion.

Threats to construct validity concern the relation be-
tween the theory behind the experiment and the observed

9. The two aforementioned percentages add up to more than 100%
since the same dependent can be exposed to multiple vulnerabilities.
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findings. They can be mainly due to imprecisions in the
measurements we performed. We relied on the libraries.io
dataset of software library dependencies [24] and a dataset
of vulnerabilities provided by Snyk.io. To convince us of
the correctness of these datasets, we manually inspected
random samples and we cross-checked the data with other
metadata we used in previous research [32], [2], [21]. We
found and excluded 305 packages with a dirty release his-
tory, i.e., packages for which the chronological order of their
major trains is inconsistent. This is generally a consequence
of a large-scale import of their releases within the package
distribution, leading the release dates to correspond to the
date of the import and not to the actual release date.
Another source of imprecision stems from our proxified
definition of backports. As explained in Section 4.3, we
relied on a comparison between the chronological order of
the releases and their version number order to identify back-
ports. We may have missed some backports in a few edge
cases. For example, when a 1.6.1 version actually contains
backported changes from 2.0.0 but nevertheless is released
a few minutes before 2.0.0. However, we are confident of
our approach since it was able to capture all backported
security fixes reported in Section 4.6. The proxy for detecting
backports may also lead to false positives. For example, a
new release deployed in a lower major train is considered as
a backport even if it does not actually contain changes back-
ported from a higher major train. A detailed comparison of
the changes made in each release would enable confirming
whether they are actual backports or not. We tried to do
so by studying the changelog files (e.g., CHANGELOG.md)
of all packages for which we identified backports. Only 575
out of the 1,571 identified packages actually had a changelog
file available in their GitHub repository. Moreover, only 139
of these 575 files were sufficiently complete, in the sense
that they explicitly reported changes related to the specific
releases that we identified as backports. The reason for
this is that most changelog files list only the changes for
major or (to a lesser extent) minor releases, or for releases
belonging to the highest available major train. They tend to
ignore patch releases in lower major trains, that represent
91.8% of the backports we identified using our proxy. A
manual inspection of the 139 useful changelog files allowed
us to confirm the presence of backports in 125 out of 139
cases (i.e., 89.9%)10. It is not possible to know whether these
results generalise to the set of all packages.
There are also construct validity threats related to package
dependencies. For example, packages may contain bloated
dependencies that are declared but not really needed when
executing the application. As such, the potential impact and
need for backporting can be lower in practice. Soto-Valero
et al. [33], [34] studied the phenomenon of bloated depen-
dencies for the Maven Central distribution of Java packages.
In a similar vein, not all vulnerabilities necessarily affect
all dependents of the vulnerable package. If the vulnerable
functionality of the required package is not used by the
dependent, the latter will not be affected. Still, it may be
wise to adopt vulnerability fixes nevertheless, since it is very
difficult and computationally intensive to analyse when a

10. The Appendix provides some isolated concrete examples of what
we found in changelog files

vulnerability is harmless to dependents.

Threats to internal validity concern choices and factors
internal to the study that could influence the observations
we made. One such choice was our decision to study
only active packages that have been updated in the last 12
months preceding the considered snapshot of the package
distributions. This choice was motivated by earlier work in
which we found that more than 90% of all package updates
(for required packages) are made within 12 months after a
previous update [2].
Another choice that might have influenced our observations
was the decision to consider only packages that have at
least 5 direct dependents. We do not think this has affected
our findings much, as 5 is a rather low number, and it is
reasonable to believe that package producers will not bother
spending effort to backport release updates if there are too
few packages relying on it. A possible threat is that we
attributed the same weight to all dependents, considering all
of them as being equally important. This is not necessarily
the case, since some direct dependents may themselves be
used by many direct and indirect dependents. In future
work, we will consider the effect of transitive dependents on
the decisions of package producers related to backporting.
In RQ5, we compared the major trains from potentially
heterogeneous packages. As packages have different char-
acteristics, a paired comparison (i.e., per package) between
major trains with and without backports would be more
appropriate. However, the number of major releases per
package is usually small, and such a paired analysis would
not yield any statically significant result. For instance, only
125 out of 1,570 packages with backports have at least 2
major trains with a backport and at least 2 major trains
without. We actually conducted such a comparison on this
small subset of packages. Despite the too small size of this
comparison to be statistically relevant, the findings were in
accordance with the results reported in the paper based on
the alternative analysis.

Threats to conclusion validity concern the degree to which
the conclusions derived from our analysis are reasonable.
Since our conclusions are mostly based on quantitative
observations, and supported by statistical tests with high
confidence (even after correcting for family-wise errors),
they are unlikely to be affected by such threats.

The threats to external validity concern whether the re-
sults can be generalized outside the scope of this study.
While our analyses can be applied to other software pack-
age distributions, those distributions should also adhere
to semantic versioning practices in order to be able to
compare their results with the package distributions that we
considered. We already observed some differences between
the considered package distributions, and we expect to see
more of such differences in other package distributions. For
example, backporting practices would be totally absent in
the official CRAN distribution of R packages, since CRAN
adopts a rolling release policy, requiring all dependents to
rely on the highest releases of the packages they depend
upon.11 Earlier work has shown that this makes the CRAN
package dependency network an outlier compared to other

11. https://cran.r-project.org/web/packages/policies.html

https://cran.r-project.org/web/packages/policies.html
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package distributions [2].
Since our dataset only considers packages and their depen-
dents within a package distribution, we cannot generalise
the findings to dependents that live outside of the pack-
age distribution. In particular, we did not study the effect
of backporting on external projects (e.g., repositories on
GitHub) depending on the considered packages. Studying
this effect would constitute an interesting topic as future
work.
A final external validity threat is that we only considered
backporting from major trains to lower major trains be-
cause, if semantic versioning is being practised, dependents
using semver-compliant dependency constraints automati-
cally benefit from bug fixes and security patches within a
major train. As such, there is no need to backport updates
from minor trains to lower minor trains.

6 DISCUSSION

6.1 Continued maintenance of lower major trains
Producers of required packages that have many dependents
face a difficult choice whenever they create a new major
release. In order to urge dependents to move to the high-
est major release, they could decide to stop maintaining
lower major trains. This might induce problems for those
dependents for which the effort to upgrade to the new major
release is too high (e.g., because of backward incompatibil-
ities, lack of manpower, or the need to carefully plan and
test major upgrades). This may explain the observation in
RQ1 that many dependents still depend on a lower major
train. The alternative is that package producers continue
to support lower major trains, in order to allow outdated
dependents to continue to benefit from bug fixes, security
patches and possibly other relevant backported changes.

Continued support of lower major trains might have
the adverse effect of delaying the migration of dependents
to the highest major release: they might prefer to stick
to lower major trains because it requires less effort from
their part. This is just a respite, however, since lower major
trains are unlikely to be maintained forever even when they
benefit from backports, as shown in RQ5. For these reasons,
package producers should devise and advertise a clear
phase-out strategy of lower major trains, to avoid giving
dependents a false sense of security. For example, they could
decide to continue supporting lower major releases for a
fixed amount of time, after which the dependents will be
left on their own. The advantage of such a delay is to
give dependents the necessary time to upgrade, without
running an increased security risk during this transition
period. Publishing prereleases and release candidates of an
upcoming new major release may also help dependents by
giving them time to prepare the upgrade to the next major
release before it is officially published. This allows them
to adopt the new major release as soon as it is officially
published, rather than having to start integrating changes
only from that point onwards.

RQ2 highlighted the need to support earlier major trains,
since they continue to remain actively used. This implies
that package producers also need to decide whether they
should continue to support multiple lower major trains or
only the previous one. The more major trains that require

backports, the more effort is needed from package produc-
ers. Especially if a rapid release policy is being followed, with
new major versions being released frequently, one cannot
reasonably assume all dependents to keep up with this
rapid pace. In that case, package producers could opt for
distinguishing between short-term support (STS) and long-
term support (LTS) major releases. The latter are guaranteed
to be supported by bug fixes and security patches over
extended periods of time. An example is Angular’s support
policy.12 Another strategy is used by Electron, allowing so-
called stabilization branches of major version trains to exist
simultaneously.13 At least two of such branches continue to
receive backports of security updates and cherry-picked bug
fixes as necessary.

6.2 Tool support

Tools that help in creating backports can reduce the burden
for producers of required packages. An example is the backport
tool on npm that automates the process of backporting
commits on a GitHub repository. Backporting tools like
FixMorph [13] (that was proposed for transferring patches
in the Linux kernel) and other automated patch transplan-
tation techniques [16] could be adapted for backporting
patches of bugs and vulnerabilities in package dependency
networks as well.

Producers of dependent packages can also benefit from
tools that automate some or all of the changes required
to adopt a new incompatible version. Examples of such
tools are ng update for angular and lodash-migrate. Package
producers may also provide migration guides to make it
easier for dependents to upgrade to newer major trains.
These guides provide a detailed list of incompatible changes
and instructions on how to incorporate them in a de-
pendent package. Some examples of migration guides are
https://expressjs.com/en/guide/migrating-4 and https://
vuejs.org/v2/guide/migration.

At the level of the package distribution itself, tools and
dashboards could be provided to highlight which major
trains of distributed packages are still in active use, and
by how many dependents. This will help package pro-
ducers to make more informed choices about which major
trains to support. npm-deprecate could be considered as
a lightweight example of such a tool. Its purpose is to
signal the deprecation of a particular version (or range of
versions) of a package by providing warnings to anyone
who attempts to install this version. Such deprecations can
be used to communicate to dependents for which major
trains no new releases should be expected.

Distribution-level tools should also integrate informa-
tion about security vulnerabilities in distributed packages,
for example to highlight how many and which outdated
dependents are still affected by vulnerabilities for which
fixes are available in higher major trains. From the point of
view of dependents, automated dependency analysis tools
(such as Dependabot) could be extended, for example by

12. https://angular.io/guide/releases#support-policy-and-
schedule

13. https://www.electronjs.org/docs/tutorial/electron-
versioning#stabilization-branches

https://expressjs.com/en/guide/migrating-4
https://vuejs.org/v2/guide/migration
https://vuejs.org/v2/guide/migration
https://angular.io/guide/releases#support-policy-and-schedule
https://angular.io/guide/releases#support-policy-and-schedule
https://www.electronjs.org/docs/tutorial/electron-versioning#stabilization-branches
https://www.electronjs.org/docs/tutorial/electron-versioning#stabilization-branches
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warning dependents that the period of support of a lower
major train is nearing its end.

The package distributions could also provide concrete
guidelines and policies for package producers willing to
backport updates to lower major trains. This is quite com-
mon in Linux distributions such as RedHat14, Ubuntu15

and Debian16. For example, Debian maintains packages for
several simultaneous release lines. The most important ones
are Testing, Stable and Oldstable. In Testing, packages are
updated frequently, so that users benefit from new function-
ality but are also expected to report potential bugs. Stable
and Oldstable, in contrast, include only the most important
fixes and security updates. These fixes received in Stable
and Oldstable are in fact backports.

6.3 Differences between package distributions
While the decision to backport lies in the hands of a package
producer, there may be community values and expecta-
tions from the package distribution to be considered. For
example, some package distributions are known to practice
semantic versioning more strictly than others [21]. In presence
of semver, backporting may be more relevant, since new
major releases are known to be backwards incompatible,
making it harder for dependents to upgrade to the highest
major train. Yet, even in absence of semver, it is still useful to
backport bug and vulnerability fixes to lower release trains
when higher release trains are known to be incompatible.

During our analysis for RQ3 we observed an important
effect of backward incompatibilities on backporting prac-
tices in the Packagist distribution of PHP packages. This
was caused by the introduction of PHP 7, a notoriously
backward incompatible17 successor of PHP 5. It caused
many packages to start maintaining two parallel branches:
one for PHP 5 (so that dependents are not forced to migrate
to PHP 7 to continue to use the package), and one for PHP 7
(to allow dependents that already migrated to that version
to use the package). Incidentally, the same kind of issue also
arose for the Python language during the transition from
Python 2 to Python 3. However, to facilitate the migration, a
compatibility layer for Python 2 was published, supporting
some of the incompatible changes of Python 3 to allow
package producers to release new versions that worked on
both Python 2 and Python 3, obviating the need to maintain
two parallel branches. Similarly, the Symfony Polyfill project
for PHP enables backporting features of the highest PHP
versions to increase portability across PHP versions.

Another factor may be the extent to which dependents
use strict dependency constraints. By doing so, they may
prevent automatic installation of new patches and minor up-
grades, regardless of the major train they are depending on.
While RQ1 revealed that a majority of dependents rely on
the highest available major train, we also observed that not
all of them are relying on (and thus benefit from) the highest
minor or patch releases within the highest major train. If the
community of a package distribution has the habit of using
strict constraints, then backporting becomes less useful and

14. https://access.redhat.com/security/updates/backporting
15. https://wiki.ubuntu.com/UbuntuBackports
16. https://backports.debian.org
17. https://www.php.net/manual/migration70.incompatible.php

hence less practised, as there are less packages that can
benefit automatically from backported updates. It may also
result in a higher risk of unfixed security vulnerabilities in
such package distributions.

For some of the analyses reported in this article, we
observed that the Cargo package distribution behaved differ-
ently from the other considered package distributions. This
was caused by a very high proportion of Cargo packages
that continue to stay in the major 0 version space [26].
As such, only a minority of packages can actually practice
backporting (from one major release to a lower one). This
may explain why RQ3 reported a lower proportion of
packages with backports in Cargo, and why most backports
in Cargo are actually to major train 0. It is possible that Cargo
packages practice backporting at the level of minor releases
(i.e., patches to minor releases are backported to previous
minor releases). We did not study this phenomenon in the
context of this article because it goes against the semantic
versioning policy, but it is an interesting topic to study in
future work. Indeed, we found anecdotal evidence of such
minor backporting practices being applied occasionally in
other package distributions as well.18

6.4 On the why and how of backports
This article is the first in its kind to empirically study back-
porting in package dependency networks. The presented
results were essentially quantitative in nature, focusing on a
coarse-grained analysis based on the release metadata and
dependency metadata of the considered packages. In order
to gain a better insight into why and how backports are being
used, one would need to delve deeper along two different
dimensions.

Concerning the why question, the reported quantitative
insights need to be complemented by qualitative analyses
in order to understand the rationale behind why package
producers create backports, which types of changes are be-
ing backported, and which major release trains are targeted
by these backports. Surveys and in-depth interviews with
package producers that practice backporting, as well as
producers of outdated dependents, will allow us to better
understand the internal and external factors that influence
their decisions. Once we have gained more qualitative evi-
dence we could exploit it to come up with prediction models
for backporting practices, which could be useful for both
required and dependent package producers.

Concerning the how question, in addition to the afore-
mentioned qualitative insights, more fine-grained quantita-
tive analyses should be conducted. These analyses could
involve studying the impact of backports on transitive
dependents, but also the types of changes that are being
backported. RQ6 focused on a specific type of changes,
namely security fixes, but other important changes such as
bug fixes might be backported as well. Based on our manual
inspection of those changelogs that actually report about
backports we observed that backports tend to fix security
issues and bugs that were discovered while working on a
higher major train, but they are also used to resolve com-
patibility issues (e.g., a breaking change in a dependency)

18. For example: https://github.com/electron/electron/releases/
tag/v1.7.16

https://access.redhat.com/security/updates/backporting
https://wiki.ubuntu.com/UbuntuBackports
https://backports.debian.org
https://www.php.net/manual/migration70.incompatible.php
https://github.com/electron/electron/releases/tag/v1.7.16
https://github.com/electron/electron/releases/tag/v1.7.16
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and even to port relevant new functionality to a lower major
train.

In this article we used a proxy that considers as backport
any new release that is applied to a lower major train. A
manual inspection of changelog files, for those packages
that have such files, revealed that many releases (especially
patch releases from lower major trains) do not even have
their changes documented in the changelog file. Even when
they do, changes corresponding to a backport might not
be signaled explicitly as such. This makes it very difficult
to carry out automated analyses, and calls for a more
widespread, systematic and disciplined way of document-
ing changes between package releases. Managers of package
distributions should encourage this, and could provide tools
to facilitate the creation, verification and maintenance of
changelogs of packages.

It would also be of interest to carry out fine-grained
quantitative analyses of the actual source code changes to
come to a more detailed assessment of the nature of back-
ports. Doing so would require analysing the code commits
stored in the packages’ version control repositories. Such
analysis would be quite challenging and time-consuming
because package releases may have a high number of com-
mits, because the history of git repositories can change over
time [35], because it is not easy to map commits to package
releases, and because it is unclear how to identify whether a
given (set of) commit(s) actually corresponds to a backport.

7 CONCLUSION

This article focused on the phenomenon of backporting in
package dependency networks. Changes applied to a pack-
age’s major train (i.e., a sequence of releases with the same
major version number) may be backported by the package
producer to lower major trains. Keeping lower major trains
stable and secure over extended periods of time is especially
beneficial to the many dependent packages that lag behind.

We empirically studied the practice of backporting in the
package dependency networks of four large package distri-
butions: Cargo, npm, Packagist and RubyGems. We observed
that a non-negligible proportion of dependent packages still
depend on lower major trains. In npm, it is even common
to lag multiple major trains behind. From the perspective
of required packages, we observed that their dependents
frequently rely on lower major trains, highlighting the need
to continue maintaining those releases to avoid dependents
becoming too vulnerable. Despite this need, only a minority
of required packages continues to maintain such lower
releases. If they do, most of the dependents relying on such
releases benefit from the backporting. Those packages that
do practice backporting tend to have a longer lifetime, and
also tend to have more releases and more dependents. Major
trains that receive backports continue to receive updates
much longer than major trains that do not.

Manual inspection of changelogs revealed that back-
porting is practised for a wide variety of reasons: to fix
security issues, to port bug fixes from a higher to a lower
major train, to resolve backward compatibility issues, and
even to port relevant new functionality to a lower major
train. Focusing specifically on security vulnerabilities in the
npm and RubyGems dependency networks, we found that

a majority of them affect several major trains but are only
fixed in a single one. We found thousands of dependents
that still rely on a lower major train that is exposed to a
vulnerability for which a fix is available in a higher major
train. This calls for action, such as backporting those fixes so
the dependents can adopt them automatically.

Packages producers and package distributions them-
selves should adopt explicit policies about which major
trains will remain supported by backports and for how
long. Automated tools and dashboards could help to raise
awareness and to reduce the burden of backporting for
producers of required packages. Similarly, tools and guides
for upgrading can be beneficial for producers of dependent
packages.
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[1] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “When and how
to make breaking changes: Policies and practices in 18 open source
software ecosystems,” Trans. Softw. Eng. Methodol., vol. 30, no. 4,
Jul. 2021. [Online]. Available: https://doi.org/10.1145/3447245

[2] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison
of dependency network evolution in seven software packaging
ecosystems,” Empirical Software Engineering, vol. 24, pp. 381–416,
2019.

[3] T. Lauinger, A. Chaabane, W. Robertson, C. Wilson, and E. Kirda,
“Thou shalt not depend on me: Analysing the use of outdated
JavaScript libraries on the web,” in ISOC Network and Distributed
System Security Symposium, February 2017.

[4] A. Decan, T. Mens, and E. Constantinou, “On the evolution
of technical lag in the npm package dependency network,” in
IEEE International Conference on Software Maintenance and Evolution,
September 2018.

[5] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small
world with high risks: A study of security threats in the npm
ecosystem,” in USENIX Security Symposium, 2019, pp. 995–1010.

[6] Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu,
and Y. Liu, “An empirical study of usages, updates and risks of
third-party libraries in Java projects,” in 2020 IEEE International
Conference on Software Maintenance and Evolution, 2020, pp. 35–45.
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