
SGX Enclave Exploit Analysis and 
Considerations for Defensive SGX 
Programming

Zhang, Shunda; Jiang, Hongyan; Sun, Junli; Yang, Debin

FOSDEM 2022



EXECUTIVE 
SUMMARY 

THE EXPLOITS IN THE 

PRESENTATION ARE 

KNOWN ISSUES 

AND HAVE ALREADY 

BEEN MITIGATED IN 

SGX



AGENDA

Purpose

Threats to SGX Enclave

Defensive Programing for SGX

Security impact analysis of specific attacks

• Heap overflow

• Stack overflow

• Attack based on NULL PTR dereference

• 3rd-party CVE

• Cross Boundary Attacks



PURPOSE

Explain the Security 
Properties of Intel® 
SGX Technology

01
Help Enclave 
Developers write 
more secure code 
within an enclave

02
Analyze a sampling 
of enclave defense-
in-depth strategies 
and protections 
against known 
attacks

03



SGX ENCLAVE SECURITY 
PROPERTIES

• The security features of SGX 

include physical memory isolation, 

enclave measurement, software 

attestation, and data sealing

• Enclave provides confidentiality, 

integrity and controlled entry points



SGX 
ENCLAVE 
SECURITY 
AND 
CHALLENGE

Intel(R) SGX Technology enables applications to 
execute code in a trusted environment - an enclave

Code running within the enclave must be written 
securely

Poorly written code may be subject to attack by 
various methods

Developers must also be aware of potential side-
channel attacks on code



THREATS TO 
SGX 
ENCLAVE

Threats to SGX Enclave

Attack Purpose: Steal Secret 
Information

• Code injection based on stack/heap overflow

• Execution flow control

• 3d-party vulnerabilities 

• Cross boundary information leakage



DEFENSE-IN-
DEPTH IN 
SGX

The defense-in-depth in SGX

• Stack cookies

• Non-executable stack/heap

• Protection on exception handlers

• GCC virtual table verification

• Control flow hardening

• Safe-unlink

• Heap cookies

• Additional boundary checks inside enclave

Provided custom library/functions to ensure that 
these features worked inside an enclave



THE HEAP

• Extracting a link from a 

doubly-linked list (unlinking)



NEW TYPE 
OF
HEAP 
INJECTION IN 
SGX

Attack Example

• An outside memory is injected to free chunk chain

• Dlmalloc allocates the outside memory to the trust 
code and the secret is exploited

• Although the magic number is incorrectly changed, the 
dlmalloc code cannot know it until the overflowed 
buffer be freed. In that time, attack has finished

Mitigation in SGX SDK

• Check memory boundary before returning the 
allocated buffer to verify that memory is from the 
enclave heap



PROTECTION 
AGAINST 

HEAP 
OVERFLOW

• Background

• Ported Dlmalloc to trusted library

• Random magic number and safe unlink for heap overflow 

protection, but the checks in buffer free

• Major impacts

• In enclave environment, the detection and protection in 

free() is late, attacker can copy out secret before the 

checks in free() in some cases

• Enclave secret can be copied out in some cases

• Solution to the attack

• Mitigation in SGX SDK (boundary checks in 

unlinking/malloc/free)



ROP



BUFFER 
OVERFLOW 
PREVENTION

• Buffer overflows can use parts of your code as ROP gadgets

Background

• If ISV Enclave code has an overflow bug, attacker can do ROP and 
may leverage the gadgets to jump to memcpy to copy data outside 
enclave, or switch the esp into untrusted part

• Stack Cookies catch stack overflows prior to return from a 
procedure

Major impacts

• The best defense in SGX is to prevent overflows, ensure Buffer 
Overflow Prevention

• Make sure stack cookies is enabled

• Make sure ASLR is enabled

Solution to the attack



ENCLAVE MEMORY



LIMITED ASLR 
PROTECTION 
AGAINST 
BUFFER 
OVERFLOW

• ASLR is not supported in trust part, enclave base address changed, but not fully 
randomized and memory layout is fixed

Background

• ASLR in Enclave cannot fully protect against memory location prediction for enclave

• Attacker may predict address location of Enclave, that increases the success rate of 
buffer overflow attack

Major impacts

• Depends on Enclave Developer

Solution to the attack

• Do not rely too much on ASLR, defense-in-depth for buffer overflow is important

• Could refer to 3rd party randomization enhancement projects if needed

• e.g. Sgx-shield: https://github.com/jaebaek/SGX-Shield

Suggestion to Developer

https://github.com/jaebaek/SGX-Shield


NULL PTR 
DEREFERENCE

Background

• A NULL pointer dereference occurs when the application dereferences 
a pointer that it expects to be valid, but is NULL, typically causing a 
crash or exit

Major impacts

• Control page table to make NULL pointer points to arbitrary data to 
inject into enclave

• Enclave start address overwritten

• NULL pointer remap, may cause stack/heap overflow, code injection, 
variable overwritten and impact logic 

Solution to the attack

• SDK has added mitigation that allow enclave include 0 address inside 
enclave (hardware prevented inside address remapping)

• Suggest Enclave Developer to add appropriate checks



NULL PTR 
DEREFERENCE

Attack Example

• Bad (EC)DHE parameters cause a client crash (CVE-
2017-3730) is a NULL pointer dereference issue and 
will impact trusted code.

• OpenSSL Security Advisory: 
https://www.openssl.org/news/secadv/20170126.txt

• CVE-2017-3730 is only Moderate in Open-SSL 
security advisory, but can be a severe issue for SGX

Suggestion to Developer

• Check NULL or abnormal parameters: if (NULL == 
ptr) abort(); //error handling

https://www.openssl.org/news/secadv/20170126.txt


3RD-PARTY 
CVE

Background

• Enclave can be linked with libraries, such as 
OpenSSL/IPP, which will contain CVE

Major impacts

• This 3rd-party CVE can cause be leveraged by attackers 

Solution to the attack

• Upgrade the 3rd-party libraries to the latest secure 
version

• Use tools like BDBA (Black Duck Binary Analysis) to help 
find CVE in 3rd-party libraries



ALIGNMENT AND PADDING INTRODUCTION

Cross Boundary Information Leakage



PADDING ISSUE

• Information leak

• Secret data, not cleared by 

other function calls 

• Security cookie/canary in 

stack (Security cookie is 

random but unchanged after 

each load) 



MITIGATION

Clear secret (memset_s) after use

Initialize (memset_s) data structure

Use pack(1) 

Compiler option /Zp1 (VS), -fpack-struct (gcc)

Add static_assert for each structure they are the same size as 
designed and without padding

Remind Enclave writer in developer guide



RACE 
CONDITION 
– TOCTOU 

• Race condition

• Pointers across boundary can be replaced

• Check should before use: github.com/01org/linux-

sgx/pull/135

• Mitigation

• Stress-test in multi-thread environment

• Specific code review

https://github.com/01org/linux-sgx/pull/135


SUMMARY

SGX provided a mechanism to better isolate 
user-level software from attackers, but it does 
not mean 100% secure

If ISV Enclave has traditional vulnerabilities 
like buffer overflow in their code, it may still 
make trouble

Enclave developers should pay attention to 
these attacks other than directly crypto-
analysis to Enclave



Q&A


