
Optimizing BPF
hashmap and friends

FOSDEM 2023

Anton Protopopov

https://www.linkedin.com/in/aspsk/
https://github.com/aspsk

New hash function for BPF

● BPF Summit 2021: Andrii Nakriyko proposed to try new hash
functions for BPF hashmap (and other hash-based maps)

● XXH3 – a perfect modern hash function by Yann Colette, but
requires vector operations, so no use for BPF

● However, vectorized ops only required for input lengths > 240,
and there’s a scalar version which should work better than
jhash in any case

● Our use cases in Cilium require key sizes of 4-24 bytes
● (My original intent was to use xxh3 to optimize Wildcard map)

https://www.youtube.com/watch?v=nXZ4mhD0iFQ
https://github.com/Cyan4973/xxHash
https://www.youtube.com/watch?v=isVr_WeeBGI

Short contents

● Benchmark howto

● Benchmark hash functions

● Benchmark maps using different hash functions

Reduce noise

● Modern CPUs will do everything to ruin your benchmarking, so

● Disable frequency scaling

● Disable hyperthreading (and multiprocessing if you’re paranoid)

● Benchmark in kernel, so that you can disable preemption and

interrupts

How to benchmark

How to benchmark
OFFSET is how much time gimme_time() takes
itself. For small N, e.g., 1, the error of OFFSET/N
may be order[s] greater than the function call itself

How to compute OFFSET?

Benchmark an
empty loop

Let’s try with gimme_time=rdtsc

Time sample = rdtsc, noise on

Time sample = rdtsc, noise off, better scale

+- 1 cycles looks ok for your case? Not so fast

+- 1 cycles looks ok? Not so fast

The problem here is that rdtsc is not a serializing
instructions and can be reordered. For example, it
might be executing in the middle of your function or
even after

Serialize it!

* See the whitepaper by Gabriele Paoloni from Intel; I’ve replaced CPUID by LFENCE to deal with less regs

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf

lfence+rdtsc+lfence (10x10 measurements)

* See the whitepaper by Gabriele Paoloni from Intel; I’ve replaced CPUID by LFENCE to deal with less regs

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf

Hash functions of interest

● Jhash: Bob Jenkins hash, used in BPF

● Spooky hash: a newer hash by Bob Jenkins

● XXHash32, XXHash64: modern hash functions by Yann Collet

● XXH3: more modern hash by Yann Collet

https://en.wikipedia.org/wiki/Jenkins_hash_function
https://burtleburtle.net/bob/hash/spooky.html
https://github.com/Cyan4973/xxHash
https://github.com/Cyan4973/xxHash

Go spooky!

Spooky wins!

xxh3 vs jhash

xxh3 vs jhash

Hash-based maps

● Stacktrace map: the original reason to use xxh3

● Hashmap

● Bloom filters

Stacktrace: why to use xxh3?

● The hash computations for stacktrace work about twice faster

with xxh3 (as stacktrace keys are 8 x stack depth long)

● This doesn’t affect the speed much, because

get_perf_callchain() runs >> longer than hash

● However, xxh3 should be better when considering hash

collisions

● For stacktrace [speed] benchmarking see my drafts one, two

https://github.com/aspsk/bpf-bench/tree/master/stack-trace-map
https://github.com/aspsk/bpf-next/commit/f2646a8dfe9cd837c74d374881e7c3d5c8c457c1

Hashmap benchmark

● I was primarily interested in lookup times, so used a new

hashmap benchmark for bpf bench utility

● A lot of output, so I wrote scripts to plot the results

https://lore.kernel.org/bpf/20230127181457.21389-1-aspsk@isovalent.com/
https://github.com/aspsk/bpf-bench/tree/master/hashmap-bench

Hashmap (max_entries=1000, 100% full, Intel i7)

Hashmap (max_entries=10K, 100% full, Intel i7)

Hashmap (max_entries=1000, 100% full, Ryzen 9)

Hashmap (max_entries=100K, 100% full, Ryzen 9)

Hashmap (max_entries=1M, 100% full, Ryzen 9)

Hashmap: composite hash

● I’ve used the same trick as in Bloom filter: just use jhash2 for

key sizes which are divisible by 4

● How to combine jhash2 and xxh3? Use jhash2 for small keys

which are multiple of 4, and xxh3 otherwise

Hashmap: composite hash

Hashmap: composite hash

The key_len_32 = key_len/4,
and is computed once when
hash is initialized

Hashmap: 10K, 100% full (worst case)

Hashmap: 100K, 100% full (worst case)

Hashmap: 100K, key_size=8

* Tip: always use key lengths divisible by 8 in BPF maps

Hashmap: 100K, key_size=64

Hashmap: 100K, key_size=128

Bloom filters

● At the moment bloom filters use jhash2() for key sizes which

are divisible by 4, and jhash() otherwise, so speed gain for small

keys is not expected

● Anyway, let’s try to use the new hash function and see what

happens

Bloom filter: 9 hashes, 1M elements, 75% full

Scalar xxh3 vs xxh64 for inputs > 240 bytes, -O2

Important: -O3 makes it all different*!

* … but -O3 is no go at the moment, see this thread

** See also this thread at github for benchmarks on different architectures made by Yann Collet

https://lore.kernel.org/lkml/CA+55aFz2sNBbZyg-_i8_Ldr2e8o9dfvdSfHHuRzVtP2VMAUWPg@mail.gmail.com/
https://github.com/Cyan4973/xxHash/issues/793

What’s next?

● Looks like the composite variant of hash is a good candidate for

hashmap/Bloom filters, however, need to run my benchmarks

on more architectures first [e.g., didn’t run on aarch64]

● The xxh3 looks ready to use for the stacktrace map [maybe

after someone will actually “benchmark” the collision rate; I

couldn’t see much difference on random inputs, but stack

traces aren’t random, so xxh3 is expected to work better]

Links to some benchmarks

● The scripts I’ve used to benchmark and plot hash functions and

hash maps are here

● The whitepaper from Intel is a good source on how to

benchmark things which you can’t execute in a loop

● [userspace] benchmarks from author of XX*hash

● Kernel: see the bench utility in tools/testing/selftests/bpf

https://github.com/aspsk/bpf-bench
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://github.com/Cyan4973/xxHash/tree/dev/tests/bench

Thank you!

https://www.linkedin.com/company/isovalent/
https://twitter.com/isovalent
https://github.com/isovalent
https://isovalent.com/

xxh3 vs jhash (how stable is our bench, part1)

xxh3 vs jhash (how stable is our bench, part2)

xxh3 vs jhash (how stable is our bench, part3)

Bloom filter: 5 hashes, 100K elements, 75% full

Bloom filter 5 hashes vs. hashmap (10K, 100% full)

Hashmap: 1M, 100% full, see the next slide

The previous benchmark correlates to this one

