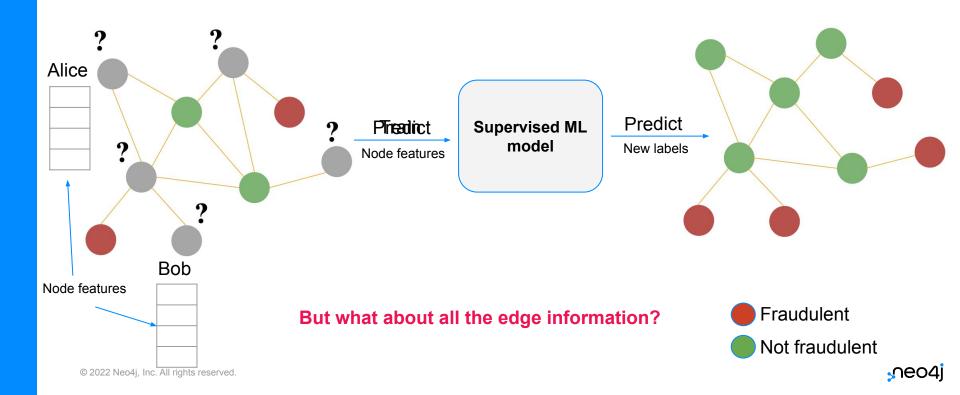
On the HashGNN Node Embedding Algorithm

Jacob Sznajdman Staff Software Engineer, Neo4j

Adam Schill Collberg Senior Software Engineer, Neo4j

Overview

- The Node Classification Problem
- Node Embeddings
- HashGNN
 - How it works
 - Why use it?
 - Benchmarks
- Neo4j Graph Data Science
- Notebook Example
- Further Learning

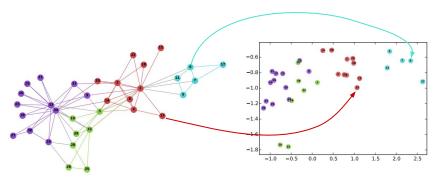


The Node Classification Problem

A machine learning task on graph

© 2022 Neo4j, Inc. All rights reserved.

Node classification


Node Embeddings

Encode a graph's edge information into per node vectors

Node Embeddings

- Graph topology (edges) encoded into per node vectors
- Vectors are geometric representations of nodes based on graph topology
- Suitable as input to ML models
- Analogous to word embeddings (like Word2Vec)
- Many algorithms: GNNs, Node2Vec, FastRP,...

(a) Input: Karate Graph

(b) Output: Representation

HashGNN

A node embedding algorithm from the paper: *Hashing-Accelerated Graph Neural Networks for Link Prediction*, by Wei Wu, Bin Li, Chuan Luo, Wolfgang Nejdl

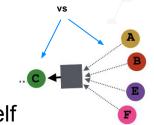
HashGNN: The original algorithm

- Takes binary node features input, and represents node embeddings in binary form
- Uses message passing along edges, similar to PageRank and many GNNs
- In the aggregation step, HashGNN samples features from the current node and its neighbours

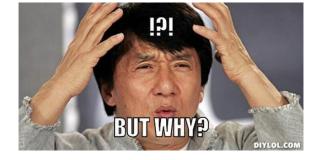
neod

HashGNN: Extensions

- Control neighbors' influence:
 - Probability of sampling features from a neighbor vs node itself


- Heterogeneity support:
 - Distinct hash functions for different edge types

- **Binarization** of input:
 - Allow any numerical input


98613 = 11000000100110101

- Support graphs without node features:
 - Generate initial input internally

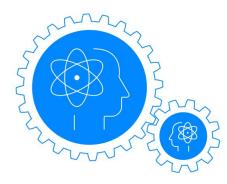
HashGNN: Why use it?

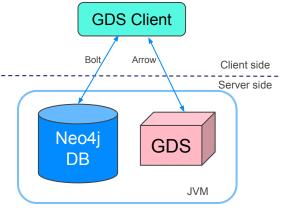
- Can generate high quality node embeddings
- Can encode the heterogeneity of a graph
- A lot faster than neural models
- Simpler than neural models and does not require training
- Does not require GPU
- Scales very well with increased CPU concurrency
- Does not require node feature input
- Has inductive capabilities

• Though less so when using binarization in our testing so far

HashGNN: Node Classification Benchmarks

	DBLP* (% F1 score)	ACM* (% F1 score)	IMDB* (% F1 score)
DeepWalk*	63.18	67.42	32.08
metapath2vec*	85.53	87.61	35.21
GCN*	87.30	91.60	56.89
GAT*	93.71	92.33	58.14
HAN*	92.83	90.96	56.77
GTN*	94.18	92.68	60.92
HashGNN	93.50	92.38	59.12


*: From the "Graph Transformer Networks" NeurIPS paper


Neo4j Graph Data Science

A Neo4j DB plugin for graph analytics at scale

© 2022 Neo4j, Inc. All rights reserved.

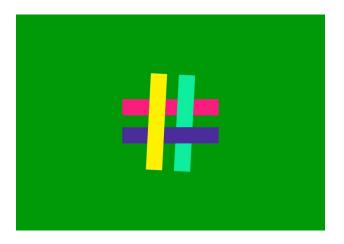
Neo4j Graph Data Science (GDS) Library

- A Neo4j DB plugin for analytics
 - GPL v3 License
 - Part of the DBMS (server) process
 - Projects graph into volatile memory for analysis
- Provides high performance graph algorithms
 - Running at scale (100s of billions of nodes)
 - Has performant implementation of HashGNN

<u>√</u>eo4

- Has a Python client
 - Pythonic data science surface
 - Apache 2.0 License
 - \circ pip install graphdatascience

Notebook Demo!


Heterogeneous Node Classification with HashGNN on an IMDB dataset

© 2022 Neo4j, Inc. All rights reserved.

Further learning

- The demo notebook
- The HashGNN GDS manual docs
- The paper: <u>Hashing-Accelerated Graph Neural Networks for Link</u>

Prediction

Thank you!

Contact us at team-gds@neo4j.org

