
Developing effective testing pipelines
for HPC applications

Jason C. Nucciarone | @nuccitheboss | Associate Software Engineer | HPC

Who am I?

Who’s this guy talking to you up here?

• First started in HPC industry with my university as an HPC
software consultant with my university solving researchers
issues with Singularity, Fortran, Jupyter, etc.

• Left for a bit to work adversarial machine learning
workflow orchestration framework.

• Came back to my university’s HPC site as an engineer to
work on Singularity containers and cluster debugging tools.

• After graduation, I joined Canonical’s new HPC team.

Now what sent me down this path of
wanting to develop effective testing

pipelines for HPC applications?

How it started…

• Began writing “destructive” code.
Dangerous to test locally - what if I
accidentally uninstall a package on my
workstation that I should not have.

• Wanted to test machine provisioning
scripts before moving onto actual
deployments.

• Desire for reproducible tests. Enable
others to run unit, functional, and
integration tests without needing to
adapt my workflow to their
infrastructure.

Please make it
stop…

“Should work this
time”

What if I could take a test written here… …and run it using any hypervisor I want, on whatever
operating system I need, without any extra hassle?

This gave me an idea…

How it is going…

OpenLDAP

NFS

slurmctld

slurmd

slurmd

slurmd

Id
en

ti
ty

Sh
ar

ed
 F

il
e

Sy
st

em

Resource Management

“If you keep the
thermostat set to 8°C,
you might be able to
afford the cloud bill

this month”

Why waste precious compute
time on your HPC cluster
when you could emulate your
cluster on a smaller scale
locally instead?

What if you could test your
applications, jobs, or
simulations on a mini-HPC
cluster? Test before using
your compute allocation.

Let me introduce you to cleantest - a testing
framework that brings up clean environments
and mini-HPC clusters for developers in a hurry

What exactly is a “cleantest”?

cleantest can be
configured by registering
hooks before the testlet is
executed.

cleantest also has built-in
utilities for creating
mini-HPC clusters using
your “test environment
provider” of choice.

cleantest’s are composed of three parts

Testlets are an entire Python
program encapsulated inside
of a regular function.

They contain the test that you
want to run inside of the
containerized/virtual
environment.

The result of the teslet is
returned to the launching
process.

cleantest is testing
framework “agnostic” which
means that you can use it
with your testing framework
of choice (pytest, unittest,
etc.)

Bootstrapping/Configuration Testlets Evaluation/Reporting

Bootstrapping/Configuration

Nodes can be provisioned, test environment
instance configurations can be created, and
hooks can be registered before the testlet is
injected into the test environment instance.

The process for configuring cleantest usually is:

1. Instantiate a Configurer instance
2. Bring up nodes
3. Define hooks
4. Register hooks

Right: LXDArchon registering a StopEnvHook (run
after testlet has completed) and creating nodes.

Testlets

Using Python decorators and
metaprogramming utilities, the
testlet is taken out of the Python
process and instead run using the
Python interpreter bundled
within the test environment.

Middle-top: Spread test on three
different Ubuntu distributions.

Middle-bottom: Test that snaps
were successfully installed.

Right: Submitting test SLURM job
to mini-HPC cluster.

Testlet results from the test
environment instances are
returned as a generator. This is
because the same testlet can be
executed on multiple test
environments instances.

Right: Various ways of evaluating
the result of a testlet/testlets.

Evaluation/Reporting

How does it work?

{
“checksum”: str,
“data”: str,
“injectable”: str,

}

Result(
exit_code: int,
stdout: str,
stderr: str,

)

localhost://

Host Operating System

cleantest

Remote Operating
System

cleantest

Hypervisor

Container image

localhost:// or remote://

How does it work? (cont.)

Archon Harness

An Archon (director) class is used for explicitly
controlling the test environment provider.

Archon injects cleantest and its dependencies
into every new node that it is directed to add.

Example of Archon being used:

Harness wraps around a testlet to initialize,
provision, manage, and destroy a test
environment instance.

Harness injects cleantest and its dependencies
into the test environment instance when a unique
instance is created.

Example of Harness being used:

http://www.youtube.com/watch?v=UXQ9WHRiBfo

Current limitations :-(

● Lack of robust multi-distribution support.
○ You can launch Alma, Rocky, CentOS, Arch, etc instances, but the package

macros and utilities do not yet support them fully.

● Public documentation is behind.
○ cleantest 0.3.0 -> 0.4.0 has seen some major API changes based on identified

limitations in 0.3.0.

● Lack of package (manager) integrations.
○ Support for packages has been added ad hoc. In 0.5.0 I would to see the

inclusion of support for Debs, Rpms, Pacs, Spack, and EasyBuild.

● I am the only developer currently.
○ I like to think that I am a good programmer, but we all know the truth.

cleantest source code (if you are interested!)

https://github.com/NucciTheBoss/cleantest

Ubuntu & HPC
Powering the next generation of research with the best of FOSS

We bring the best of…

and more! Want to improve HPC on Ubuntu? Scan the QR code above to join our public
Mattermost channel!

Thank you for listening!
Questions, Comments, Concerns?

