Developing effective testing pipelines
for HPC applications

) G
Jason C. Nucciarone | @nuccitheboss | Associate Software Engineer | HPC CAN@N ICAL U b U n tu y



Who am |?

Who's this guy talking to you up here?

» First started in HPC industry with my university as an HPC
software consultant with my university solving researchers
issues with Singularity, Fortran, Jupyter, etc.

» Left for a bit to work adversarial machine learning
workflow orchestration framework.

« Came back to my university’s HPC site as an engineer to
work on Singularity containers and cluster debugging tools.

» After graduation, | joined Canonical's new HPC team.



Now what sent me down this path of
wanting to develop effective testing
pipelines for HPC applications?



How it started...

Please make it

- Began writing “destructive” code. stop...

Dangerous to test locally - what if |
accidentally uninstall a package on my
workstation that | should not have.

« Wanted to test machine provisioning
scripts before moving onto actual
deployments.

* Desire for reproducible tests. Enable
others to run unit, Functional, and
integration tests without needing to
adapt my workflow to their
infrastructure.

“Should work this
time”




This gave me an idea...

What if I could take a test written here... ...and run it using any hypervisor | want, on whatever
operating system | need, without any extra hassle?

e E——



How It is going...

Identity

Shared File System

Resource Management

slurmctld

slurmd

slurmd

“If you keep the
thermostat set to 8°C,
you might be able to

afford the cloud bill
this month”

~O

Why waste precious compute
time on your HPC cluster
when you could emulate your
cluster on a smaller scale
locally instead?

What if you could test your
applications, jobs, or
simulations on a mini-HPC
cluster? Test before using
your compute allocation.



Let me introduce you to cleantest - a testing
framework that brings up clean environments
and mini-HPC clusters for developers in a hurry



What exactly is a “cleantest”?

cleantest’'s are composed of three parts

Bootstrapping/Configuration

cleantest can be
configured by registering
hooks before the testlet is
executed.

cleantest also has built-in
utilities For creating
mini-HPC clusters using
your “test environment
provider” of choice.

Testlets

Testlets are an entire Python
program encapsulated inside
of a regular function.

They contain the test that you
want to run inside of the
containerized/virtual
environment.

Evaluation/Reporting

The result of the teslet is
returned to the launching
process.

cleantest is testing
framework “agnostic” which
means that you can use it
with your testing framework
of choice (pytest, unittest,
etc.)




Bootstrapping/Configuration

test_lxd_archon_local() ->

archon = LXDArchon()
archon.config.register_hook(

StopEnvHook ( = —[[Eifle( root /
NOdeS Can be prOVISIoned' teSt enVIronment : = archon.config.get_instance_config( ).dict()
instance configurations can be created, and R s
hooks can be registered before the testlet is

archon.config.add_instance_config(
InstanceConfig(

={
injected into the test environment instance.
The process for configuring cleantest usually is: i
Instantiate a Configurer instance ;,\Ch:n_add(
Bring up nodes
Define hooks ) R
Register hooks SSSd;z:gia;e:?;i:i:;plate(-archon.get_publj)’_éi:zi:igis( )
) )
Right: LXDArchon registering a StopEnvHook (run arenen. 2o
after testlet has completed) and creating nodes. : e

=[File(sssd_conf )1




Testlets

Using Python decorators and
metaprogramming utilities, the
testlet is taken out of the Python
process and instead run using the
Python interpreter bundled
within the test environment.

Middle-top: Spread test on three
different Ubuntu distributions.

Middle-bottom: Test that snaps
were successfully installed.

Right: Submitting test SLURM job
to mini-HPC cluster.

@Lxd(

install_tabulate():
sys

tabulate tabulate
int( =sys.stdout)

int( =sys.stderr)
sys.exit(1)

sys.exit(0)

@Lxd( =
functional_snaps():
Sys
shutil which

which(
sys.exit(1)
f which(
sys.exit(1)

sys.exit(0)

@Lxd.target( )

run_job():
0s
pathlib
shutil
textwrap
time sleep

cleantest.utils
tmp_dir = pathlib.Path(

(tmp_dir /
textwrap.dedent(

).strip( )

os.setuid( )
0s.chdir( )
result run(
(tmp_dir /

))&

run

)
).write_text(

result.exit_code ==

sleep(60)
shutil.copy(

(tmp_dir /



Evaluation/Reporting

work_on_artifacts():

Testlet results from the test (

. . pathlib.Path(tempfile.gettempdir()).joinpath( ).is_file()
environment instances are
returned as a generator. Th|s iS pathlib.Path(tempfile.gettempdir()).joinpath( ).is_dir()
because the same tEStlEt can be name, result functional_snaps():
executed on multiple test result.exit_code ==

environments instances.

name, result install_tabulate():

result.exit_code ==

Right: Various ways of evaluating e e
the result of a testlet/testlets.

name, result install_snapd():

result.exit_code ==




How does it work?

localhost://

cleantest

Host Operating System

“checksum”: str,
“data”: str,
“injectable”: str,

/

Result(
exit_code: int,
stdout: str,
stderr: str,

)

localhost:// or remote://

\\

cleantest ’

Container image

|

Hypervisor

Remote Operating
System




How does it work? (cont.)

Archon

An Archon (director) class is used for explicitly
controlling the test environment provider.

Archon injects cleantest and its dependencies
into every new node that it is directed to add.

Example of Archon being used:

archon.pull(
)
archon.add(

[

=root /

=[
File(sssd_conf
File(StringI0(nfs_ip)
File(root /

Harness

Harness wraps around a testlet to initialize,
provision, manage, and destroy a test
environment instance.

Harness injects cleantest and its dependencies
into the test environment instance when a unique
instance is created.

Example of Harness being used:

@Lxd(

)

install_tabulate():



LI oocquVQ“n&um e
W s LR : Wi e
e o — BT

et d 0

L T TPy PR I S T ETTT TS
.gw we " | mn |

e Latad Lads g OprsenId, 3, B, o O b TRT, ST T 0 el 1Y, a.“mﬂ.o. SN S S - R D |

o L Ceatmatnad ) 0 crpptograghess 38, 8.3, macaptiongrongeey PN L0 (viAe) | eI |

b VA bl
. w.t.m regmatave i g,
. - IO, N b2 03 A LA 3, W ulyyeed
Brchen Tt T OO S 5

e
R e el ll,lcﬂ e .
'
Bt amasien s3erin
-« platform 1o - Pyt ) m-).l.l, plvgey 100 - [Mooo)mecs
Sewtnt) Une PRV TED Syt

o (L

UShimyLut SEA b SpSa ptn ALLNIL () | I
D Terhin) worretd | o TS osrtuboorsed 1, 00T lhon pymtelos. sl o Do o ] -t
ohlected 3 At

ommuun.uluw | - |

pimintaie S L L L I IR L

slornd B | LS00 (ena) | MING |

R R L

A0 (e} | R |

1/ L archon fteet_srchon, py-:oecr_ et srseo locst

8 3 — S RO T RN AT el 088 T1


http://www.youtube.com/watch?v=UXQ9WHRiBfo

Current limitations :-(

e Lack of robust multi-distribution support.
o You can launch Alma, Rocky, CentOS, Arch, etc instances, but the package
macros and utilities do not yet support them fully.
e Public documentation is behind.
o cleantest 0.3.0 -> 0.4.0 has seen some major APl changes based on identified
limitations in 0.3.0.
e Lack of package (manager) integrations.
o Support for packages has been added ad hoc. In 0.5.0 | would to see the
inclusion of support for Debs, Rpms, Pacs, Spack, and EasyBuild.
e |am the only developer currently.
o | like to think that I am a good programmer, but we all know the truth.



cleantest source code (if you are interested!)

https://github.com/NucciTheBoss/cleantest



£ Ubuntu & HPC

Powering the next generation of research with the best of FOSS

We bring the best of...

.\U‘"

[‘uru

MPIC

and more!

Flow 7~ /S'

NG

W Firefox Web Browser

»

<«

< simulation.... - Jupyterl X+ v 2O -

C O D 127.00.1:8889/labjtree/simulation.ipynt

Fie Edt View Run Kemel Tabs Setings Holp

= simulation ipynb

]
r B +XDO »
v 8 at -
= nun_steps
= xyzs = mp
B xyzs[0]
o * i
xyzs[i
&'
ax - pie.i
(5]
it
simple ClD

O 1 @ Pytond(pykeme)|idle

% Qsearch ® O =

X+

e
mCo» Code v & Python3 pykemne) O
-3
((nun_steps + 1, 3))
+ 1.65)
(nun_steps) :
1= xyzsli] + lorenz(xyzs(i]) * dt
0).ad (projection='3d")

Lorenz Attractor

Vode: Command @ Ln 45, Col 11 simulationipynb. 0 L1

Wl 22.04 0:xonsh-

) ¢
e
x
'-.

+ + .
y ?
D ¢

>¢ o
U o X ¢

@ @ @ Q19F B ¥ ®

> simulation > data > README - o x

Frifeb3 1727 @ @ % 48
Install from release (for production):

To install Jespipe from a release, first download a
commands:

and then use the following

tar -xzvf jespipe-<release-number-.tar.gz
cd jespipe-<release-number-

pip install -r requirements.txt

python setup.py install

Install from source (for development):

To install Jespipe from source, use the following commands:

git clone https://github.com/NucciTheBoss/jespipe.git
cd jespipe
pip install -r requirements.txt

nucci@gigan (10.43.5.151) - byobu Q

(W) 12@USGHZ ISVAGSTH A8BG25H 2023-02-03 17:27:53

Want to improve HPC on Ubuntu? Scan the QR code above to join our public

Mattermost

ERLEL



Thank you for listening!
Questions, Comments, Concerns?



