
05.02.2023  |  Tim Heldmann & Sebastian Kreutzer  |  FOSDEM'23  |  1

Link-Time Call-Graph Analysis to Facilitate 
User-guided Program Instrumentation
An LLVM based approach

https://exafoam.eu/

https://exafoam.eu/


05.02.2023  |  Tim Heldmann & Sebastian Kreutzer  |  FOSDEM'23  |  2

Exploring Application Performance

 Computational fluid 
dynamics toolbox

 Variety of solvers
 ~1.2M LOC

Survey Measurement
➔ Initial overview, hotspot identification

Focus Measurements
➔ Analysis of critical kernels

Empirical Modeling
➔ Prediction of scaling 

behavior

Accurate & reliable  
measurements needed



05.02.2023  |  Tim Heldmann & Sebastian Kreutzer  |  FOSDEM'23  |  3

Low-overhead Instrumentation
Code Instrumentation is a reliable method for collecting accurate performance data:
 e.g. -finstrument-functions flag in GCC/Clang

May increase runtime by orders of magnitude!

Selection mechanisms:
 Profile-based filtering (manual or tool-assisted, e.g. scorep-score [6])
 Call-graph based approaches:

 PIRA: Automatic iterative refinement [1]
 CaPI: User-defined selection specification [2]

void kernel(double* A, int n) {
    for (int i = 0; i < n; i++) {
        …
    }
}

void kernel(double* A, int n) {
    __cyg_profile_func_enter(&kernel, ...)
    for (int i = 0; i < n; i++) {
        …
    }
    __cyg_profile_func_exit(&kernel, ...)
}

Profiling
Tool



05.02.2023  |  Tim Heldmann & Sebastian Kreutzer  |  FOSDEM'23  |  4

CaPI: Compiler-assisted Performance Instrumentation

Source Code CaPI

Static
Analysis

Low-overhead
Instrumentation
Configuration

Measurement
Objective

Specified via 
selection DSL



05.02.2023  |  Tim Heldmann & Sebastian Kreutzer  |  FOSDEM'23  |  5

Selection Example
“I want to record all call-paths that contain MPI communication. Additionally, I want to measure 
functions that contain loops with at least 10 floating point operations. I don’t care about system 
headers or inlined functions.”

!import("mpi.capi")
excluded = join(inSystemHeader(%%),inlineSpecified(%%))
kernels = flops(">=", 10, loopDepth(">=", 1, %%))
join(subtract(%kernels, %excluded), onCallPathTo(%mpi_comm))

Set of all functions

➔ Reduces the number of instrumented functions by 74% (OpenFOAM)



05.02.2023  |  Tim Heldmann & Sebastian Kreutzer  |  FOSDEM'23  |  6

Streamlining the Call-Graph Analysis
CaPI relies on a statically generated whole-program call-graph
 Currently generated on the source level by MetaCG [3] 
 Can be cumbersome for complex applications

 Requires separate analysis step 
 Manual merging of local call-graphs

In this talk, we:
 Highlight differences of generating call-graphs at different stages
 Introduce the CAGE compiler plugin for LTO call-graph embedding
 Elaborate how it can be used to streamline the CaPI user experience



05.02.2023  |  Tim Heldmann & Sebastian Kreutzer  |  FOSDEM'23  |  7

Whole-Program Call-Graph
Central data structure for CaPI selection 
 Allows for named identification
 Allows for Path calculations

 Metadata can be attached
 Instruction composition
 Local/global loop depth
 Instruction count
→  Used to make instrumentation decision

 Can be generated at different stages
 Source code
 Intermediate representations
 Machine Code

main

GetInput DoStuff OutputResult

Subroutine_1 Subroutine_2

Example call-graph



05.02.2023  |  Tim Heldmann & Sebastian Kreutzer  |  FOSDEM'23  |  8

 MetaCG can generate call-graphs from source code
 Generates graph for each translation unit (TU)
 Merges separate sources to whole-program call-graph

Source Code

✔ Information gathered maps cleanly to source 
code

✔ Is what the programmer wrote
✔ Readily available tools exist

✗ Is unaware of code transformations
✗ Is unaware of other TUs

 Manual merge necessary
 Might not perfectly emulate linker behavior



05.02.2023  |  Tim Heldmann & Sebastian Kreutzer  |  FOSDEM'23  |  9

Compiled Machinecode

✔ Represents what is actually run on the CPU
✔ No code transformation will happen later

✗ Does not necessarily reflect what the user wrote
✗ Does not contain certain information

 Inlining
 Virtualness (Override/Final)
 Pointer Type information
 Constness

Radare2 [4] or Ghidra [5] can generate call-graphs from object files
 Requires no access to source code



05.02.2023  |  Tim Heldmann & Sebastian Kreutzer  |  FOSDEM'23  |  10

LLVM-IR at Link-Time
Best of both worlds

✔ Is close to what will be run on the Machine
✔ Is also close to what the programmer wrote
✔ Contains information about inlining, constness, virtualness,  type-information
✔ Is not limited to TU, but can view linking context



05.02.2023  |  Tim Heldmann & Sebastian Kreutzer  |  FOSDEM'23  |  11

We developed: CAGE-Plugin
 Call-Graph Embedding LLVM plugin

 Call-graph creation as a LLVM plugin
 Either as part of OPT
 Or as part of ld.lld (custom fork)

 Can also do:
 VTable analysis
 Metadata annotation

 Embeds result into the created binary
 Enables dynamic augmentation 



05.02.2023  |  Tim Heldmann & Sebastian Kreutzer  |  FOSDEM'23  |  12

Constructing the CG at Link-Time
Structural Information
 Call Hierarchy

 Call Path
 Call Depth
 Number of Children

 Virtual Function Calls
 Partly meta-information

Meta Information

 Instruction composition
(FLOPS, IOPS, MEMOPS)

 Local and global loop depth

 Inlining Information
 Partly structural information



05.02.2023  |  Tim Heldmann & Sebastian Kreutzer  |  FOSDEM'23  |  13

Dynamic Augmentation
 Each object file contains its own call-graph

 The call-graphs are aggregated at runtime

 Same merging rules as for TU approaches

 Can attach runtime data and export it

→ May be used to improve CaPI selection Loads .so object

passes graph on startup
Main Executable

passes graph on first load

Shared Library

Runtime Collector



05.02.2023  |  Tim Heldmann & Sebastian Kreutzer  |  FOSDEM'23  |  14

CaPI Integration 
 CaPI runtime receives embedded call-graph at program start

 Call-graphs of shared libraries merged in-memory 
 Runs selection and performs dynamic instrumentation



05.02.2023  |  Tim Heldmann & Sebastian Kreutzer  |  FOSDEM'23  |  15

Summary
 CaPI: Instrumentation selection tool based on call-graph analysis

 New CAGE plugin generates call-graph at link-time:
 Whole-program visibility, dynamically augmentable
 Allows embedding into object files

 CaPI + CAGE
 Selection and instrumentation at program start, using embedded call-graph
 Improvement of CaPI usability due to full integration into compilation process
 In active development

https://github.com/tudasc/CaPI

https://github.com/tudasc/CaPI


05.02.2023  |  Tim Heldmann & Sebastian Kreutzer  |  FOSDEM'23  |  16

References
[1] J.-P. Lehr, A. Hück, and C. Bischof, “PIRA: Performance instrumentation refinement automation”, in AI-SEPS 2018 – Proceedings of 
the 5th ACM SIGPLAN International Workshop on Artificial Intelligence and Empirical Methods for Software Engineering and Parallel 
Computing Systems, Co-located with SPLASH 2018. New York, NY, USA: Association for Computing Machinery, Inc, nov 2018, pp. 1–10.  
https://dl.acm.org/doi/10.1145/3281070
[3] J.-P. Lehr, A. Hück, Y. Fischler, and C. Bischof, “MetaCG: Annotated call-graphs to facilitate whole-program analysis”, 
in TAPAS 2020 - Proceedings of the 11th ACM SIGPLAN International Workshop on Tools for Automatic Program Analysis, Co-located with 
SPLASH 2020. New York, NY, USA: ACM, nov 2020, pp. 3–9. https://dl.acm.org/doi/10.1145/3427764.3428320
[2] S. Kreutzer, C. Iwainsky, J.-P. Lehr, and C. Bischof, “Compiler-assisted instrumentation selection for large-scale c++ codes”, in High 
Performance Computing. ISC High Performance 2022 International Workshops, H. Anzt, A. Bienz, P. Luszczek, and M. Baboulin, Eds. Cham: 
Springer International Publishing, 2022, pp. 5–19. https://link.springer.com/chapter/10.1007/978-3-031-23220-6_1
[4] Radare2. https://rada.re/n/
[5] Ghidra - Software Reverse Engineering Framework. https://github.com/NationalSecurityAgency/ghidra
[6] Knüpfer, Andreas, et al. "Score-p: A joint performance measurement run-time infrastructure for periscope, scalasca, tau, and 
vampir." Tools for High Performance Computing 2011: Proceedings of the 5th International Workshop on Parallel Tools for High Performance 
Computing, September 2011, ZIH, Dresden. Springer Berlin Heidelberg, 2012. 
https://link.springer.com/chapter/10.1007/978-3-642-31476-6_7

https://dl.acm.org/doi/10.1145/3281070
https://dl.acm.org/doi/10.1145/3427764.3428320
https://link.springer.com/chapter/10.1007/978-3-031-23220-6_1
https://rada.re/n/
https://github.com/NationalSecurityAgency/ghidra
https://link.springer.com/chapter/10.1007/978-3-642-31476-6_7

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

