
Decentralized Storage with IPFS

FOSDEM - February 2023
Dennis Trautwein
Research Engineer
Protocol Labs

How does it work under the hood?

Dennis
Trautwein

Who am I?

● Research Engineer @Protocol Labs
● Industrial Ph.D. candidate @University of Göttingen

@dennis-tra on GitHub
@dtrautwein_eu on Twitter
https://dtrautwein.eu on the Web
dennis@protocol.ai via Email

https://dtrautwein.eu

Agenda
Today’s

● What is IPFS?
● Importing Content
● Connecting to the Network
● Content Routing
● Call Outs

WHAT IS IPFS?

In Words
What is IPFS?

IPFS stands for the InterPlanetary File
System

IPFS is a decentralized storage and
delivery network which builds on P2P

networking and content-based addressing.

IPFS is not a blockchain.

In Numbers
What is IPFS?

Disclaimer: These are estimates from our vantage points. IPFS is a decentralized network. Noone has a full view of
the network. Real numbers are likely to be much higher than those.

● Operational since 2015
● # of Requests: >> 1B requests (weekly)
● Volume of Traffic: hundreds of TBs
● Unique weekly users: tens of Ms

Value
Proposition

● Decouples content from hosts
● Permanent, verifiable links
● Censorship resistance
● Alleviate backbone addiction
○ Efficient bandwidth use
○ Offline friendly
○ Emerging networks

What is IPFS?

Value Proposition

Location Addressing fails on us
● URL points to a single copy
● No way to know where other copies are
● Not possible to validate integrity
○ e.g., DNS poisoning, change copy

● No Request Aggregation

What is IPFS?

● Emerging Networks
● Offline Use
● Censorship
● Breaking Links

Installation
What is IPFS?

IPFS Desktop IPFS Companion Brave/Opera

COMMAND LINE

IMPORTING
CONTENT

ipfs init
Importing Content

● Generates PeerID
● Initializes IPFS Repository
● Just a Local Operation

ipfs add FILE
Importing Content

Content Identifier
Importing Content

Content Identifier (CID)
● Most Fundamental Ingredient
● Hash with Metadata
● Self-Describing
● Self-Certifying
● Immutable

Multiformats

<base>base(<cid-version><multicodec><multihash>)

CID Inspector
Importing Content

https://cid.ipfs.tech

Chunking
Importing Content

File

Chunks

Deduplication

● Piecewise Transfer
● Deduplication
● Random Access

(Each Chunk Hashed)

UnixFS
Importing Content

Chunks

0-100 100-200 200-300 300-350

0-200 200-350

UnixFS

(merkle-tree)

UnixFS
Importing Content

Chunks

0-100 100-200 200-300 300-350

0-200 200-350

UnixFS

(merkle-tree-dag)

IPLD

IPLD Explorer
Importing Content

https://explore.ipld.io

CONNECTING
TO THE NETWORK

Daemon
Connecting to the Network

● Long running network-connected
IPFS node

● Connects to Bootstrap Peers
● Learns about other Peers
● Announces itself to the Network

● Problem: How do we find content hosts for a given CID?
○ Solution: Keep a mapping table!

Challenge I
Connecting to the Network

Key Value

CID_1 PeerID_X

CID_2 PeerID_Y

... ...

● Problem: The mapping table gets too big!
○ Solution: Split and distribute the table to each participating peer

Connecting to the Network

Key Value

CID_1 PeerID_Y

... ...

Key Value

CID_2 PeerID_X

... ...

PeerID_YPeerID_X

Challenge II

● Problem: How do we know who has which piece of that table?
○ Solution: Deterministic distribution based on the Kademlia DHT.

Connecting to the Network

Challenge III

CONTENT ROUTING

Distributed Hash Table
Connecting to the Network

● IPFS uses adaptation of the Kademlia DHT
○ 256 bit key space (SHA256)

● Distributed system that maps keys to values
○ 2-column table
○ Provider Records: CID -> PeerID
○ Peer Records: PeerID -> Network Addresses

● Two key features:
○ XOR Distance Metric: XOR
■ notion of closeness (not geographically!)

○ Tree-based routing
● O(log N) lookups

Key Value

CID_1 PeerID_X

CID_2 PeerID_Y

PeerID_X Network Addr.

... ...

Bootstrapping
Connecting to the Network

● Calculate SHA256 of own PeerID 01001110010000010111...
● Ask bootstrap nodes if they know peers

whose SHA256(PeerID) start with:
○ 1... (no common prefix)

○ 00... (one common prefix)

○ 011... (two common prefixes)

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Prefix: -

...

Prefix: 0 Prefix: 01 Prefix: 010

Routing Table

Retrieving Content

● Calculate SHA256 of CID 01111011110001010111...
● Locate appropriate bucket
● Get list of peers in that bucket
● Start parallel request for that CID
○ If peer know that CID: Returns Provider Record (CID -> PeerID mapping)
○ If peer doesn’t know that CID: Returns list of closer peers

Connecting to the Network

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Prefix: -

...

Prefix: 0 Prefix: 01 Prefix: 010

Routing Table

Publishing Content

● Calculate SHA256 of CID 01111011110001010111...
● Locate appropriate bucket
● Get list of peers in that bucket
● Start parallel request for closer peer to that CID
● Terminate when the closest known three peers have been successfully queried
● Store Provider Record with the 20 closest peers

Connecting to the Network

Bucket 0 Bucket 1 Bucket 2 Bucket 3

Prefix: -

...

Prefix: 0 Prefix: 01 Prefix: 010

Routing Table

Content Lifecycle
Summary

Provider
Record

Data

Provider
Record

IPFS DHT

CALL OUTS

Get Involved!
Future/Open Projects

● Funding!
○ Several grants open at: https://app.radius.space/
○ Get your application in!

● All the action is public!
○ Check the Network Measurements GH repo:

https://github.com/protocol/network-measurements
○ More than 15 Requests for Measurements (RFMs)
○ Extra ideas very welcome!

QmUvSqPqYsjeab2JgsNc4PjbAGnCzfn5xid6piJgYYzehH

ACM SigCOMM ‘22

https://app.radius.space/
https://github.com/protocol/network-measurements
https://ipfs.io/ipfs/QmUvSqPqYsjeab2JgsNc4PjbAGnCzfn5xid6piJgYYzehH

THANK YOU!
@dennis-tra on GitHub
@dtrautwein_eu on Twitter
https://dtrautwein.eu on the Web
dennis@protocol.ai via Email

https://dtrautwein.eu

● InterPlanetary Name System (IPNS)
● Content addressing in IPFS is immutable by nature
● E.g., publishing a website requires mutable pointer

IPNS
Mutability

