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Agenda

1 A brief history: Keyword Search to Semantic 
search

2
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How to implement semantic search

Example with Haystack
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Documents

Query - “Kardashian sisters” 

Keyword Search
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The Kardashian family, also referred to as the 

Kardashian–Jenner family, is an American 
family prominent in the fields of entertainment, 
reality television, fashion design, and business. 
Founded by Robert Kardashian and Kris Jenner, it 
consists of their children Kourtney, Kim, Khloé, and 
Rob Kardashian, as well as their grandchildren. After 
Robert and Kris' divorce in 1991, Kris married 
Caitlyn Jenner, with whom she had two daughters: 
Kendall and Kylie Jenner. Notable extended relatives 
include Kendall and Kylie's half-siblings 

Query - “Kardashian sisters” 

Keyword matching

Keyword Search

Documents

https://en.wikipedia.org/wiki/Reality_television
https://en.wikipedia.org/wiki/Robert_Kardashian
https://en.wikipedia.org/wiki/Robert_Kardashian
https://en.wikipedia.org/wiki/Kris_Jenner
https://en.wikipedia.org/wiki/Kourtney_Kardashian
https://en.wikipedia.org/wiki/Kim_Kardashian
https://en.wikipedia.org/wiki/Khlo%C3%A9_Kardashian
https://en.wikipedia.org/wiki/Rob_Kardashian
https://en.wikipedia.org/wiki/Caitlyn_Jenner
https://en.wikipedia.org/wiki/Kendall_Jenner
https://en.wikipedia.org/wiki/Kylie_Jenner
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Semantic Search

● What if that’s just not enough?

● What if I want to be able to make my query “Who is the richest 
Kardashian sister?”
 

● How will it get what I’m trying to ask..
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Queue: Language Models
the evolution



8

Vectors, or ‘Embeddings’

Transformer language models are amazing 
● Neural networks trained on large amounts of text
● Turns text into vectors
● Can generalize quite well

They enable different NLP applications
● QA, Summarization, Retrieval, Translation, Reranking

Transformer based NLP will be a part of every application!
● Already used in Google Search, Translate, Product recommendations…
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Answer

The Evolution From Extractive to Generative Models

Context
Challenges for the Reader
● Limited input length for reader models 
● Speed
● Aggregation of predictions

Query

❓
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Retriever + Reader
● Efficient for large collections of text
● Retriever acts as lightweight filter
● Passes candidates to Reader

Answer

Documents

 Reader:          3+ hours / query
 w/ Retriever: 0.5-2 sec / query

(7.5k docs from NQ dev, RoBERTa-base, Tesla V100) 

The Evolution From Extractive to Generative Models

Query

❓
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Generative Models 
● Don’t need context
● Produce human-like answers

Answer

The Evolution From Extractive to Generative Models

Content

Query

❓
Query

❓
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Generative Models 
● Don’t need context
● Produce human-like answers

Answer

The Evolution From Extractive to Generative Models

Content

Query

❓
Query

❓
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Generative Models 
● Don’t need context
● Produce human-like answers

Answer

The Evolution From Extractive to Generative Models

Content

Query

❓
Query

❓
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The Evolution From Extractive to Generative Models

These Language Models are readily available

● Companies like OpenAI and Cohere provide increasingly impressive LLMs 

● There are many many open source models readily available on Hugging Face

● These models bridge the gap between a result being just a ‘search result’ to an 
actual human-like answer

Next steps:

● How do we use these language models for various use cases?

14
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What is Haystack?
● Fully open source NLP 

framework built in Python
● The core NLP tasks covered
● Production focused

Integration with HF model hub
● Easy to use the latest models

Integration with OpenAI and 
Cohere

● Use your API Key to plug in 
LLMs in your applications

 It’s end-to-end, not just 
models

● Connector between components
● Efficient storage options
● QoL features for all users

Document
store

Search pipelineIndexing pipeline

https://github.com/deepset-ai/haystack


16

Document stores

Core NLP Tasks covered

Data Connectors

● Elasticsearch, OpenSearch, SQL (standard options)
● FAISS, Pinecone, Milvus, Weaviate (vector optimized)

● File converters from txt, pdf, docx, markdown
● Web scraper to turn website into text
● Preprocessor to split long documents, clean text

Features of 
Haystack



17

Features of 
Haystack

Custom Pipelines
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Features of 
Haystack

Custom PipelinesExpose your applications via REST API
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Documents



22

Documents
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Documents Query

❓
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Documents Query

❓
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Documents Query

❓
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Documents Query

❓
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Documents Query

❓
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Documents Query

❓

Answer
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Let’s set the 
scene:

● We have some data
● They’re all about Game of Thrones
● We want to do Questions 

Answering

Document 
store

We have a DocumentStore full of Game of Thrones 
data

● Specifically, we have a FAISSDocumentStore
● We have .txt files about GoT in there

We want to retrieve the most relevant information 
and pass only that to the reader

● We will use the EmbeddingRetriever:
○ This will allow us to generate vector representations for 

our documents

Once we have candidate documents, we want to 
extract  an answer

● We will use the FARMReader:
○ This will allow us to use an extractive QA model from 

Hugging Face
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Some Examples with Haystack:
A simple Extractive QA pipeline
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Some Examples with Haystack:
A simple Extractive QA pipeline
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Some Examples with Haystack:
A simple Extractive QA pipeline
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Some Examples with Haystack:
A simple Extractive QA pipeline



34

Answers in Haystack



Now let’s generate some 
human-like answers



36

Some Examples with Haystack:
Answer Generation (with models from OpenAI) 
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Some Examples with Haystack:
Answer Generation (with models from OpenAI) 
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Some Examples with Haystack:
Answer Generation (with models from OpenAI) 
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Some Examples with Haystack:
Answer Generation (with models from OpenAI) 
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Some Examples with Haystack:
Answer Generation (with models from OpenAI) 
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Some Examples with Haystack:
Answer Generation (with models from OpenAI) 
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Some Examples with Haystack:
Answer Generation (with models from OpenAI) 
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Using Generative Models On Our Own Data

Query Answer

Documents
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Some Examples 
with Haystack:

Retrieval 
Augmented 
Answer 
Generation
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Some Examples with Haystack:
Retrieval Augmented Answer Generation
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Some Examples with Haystack:
Retrieval Augmented Answer Generation
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Some Examples with Haystack:
Retrieval Augmented Answer Generation
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Conclusion

● Extractive models are great at retrieving knowledge from some context

● Generative models are cool and they provide human-like answers

● Combining a retrieval augmentation step in generative pipelines can let you 
effectively use these models

● Haystack is an open source framework built in Python and it’s extended every day to 
cover more and more NLP tasks

○ Contributions welcome :) 

48
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Where to find us

● We have an open Discord server
● We have regular meetups! Go check out the Open NLP 

Meetup
● GitHub: Haystack is open source ⭐️
● Twitter @deepset_ai 

Try out your first QA pipeline with 
our tutorial:



Thank you!
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Haystack Github
github.com/deepset-ai/haystack

Haystack Tutorials
https://haystack.deepset.ai/tutorials

Discord Server
https://haystack.deepset.ai/community

@deepset_ai           @tuanacelik

    deepset    

https://haystack.deepset.ai/community
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