
Build a Semantic Search
Application in Python

FOSDEM 2023 Tuana Celik February 4th, 2023

Using Haystack

2

Tuana Celik
Developer Advocate
deepset

● MEng Computer Science (Bristol)
● DevRel since 2020
● At deepset since 2022
● Twitter: @tuanacelik
● GitHub: @TuanaCelik

3

Agenda

1 A brief history: Keyword Search to Semantic
search

2

3

How to implement semantic search

Example with Haystack

4

Documents

Query - “Kardashian sisters”

Keyword Search

5

The Kardashian family, also referred to as the

Kardashian–Jenner family, is an American
family prominent in the fields of entertainment,
reality television, fashion design, and business.
Founded by Robert Kardashian and Kris Jenner, it
consists of their children Kourtney, Kim, Khloé, and
Rob Kardashian, as well as their grandchildren. After
Robert and Kris' divorce in 1991, Kris married
Caitlyn Jenner, with whom she had two daughters:
Kendall and Kylie Jenner. Notable extended relatives
include Kendall and Kylie's half-siblings

Query - “Kardashian sisters”

Keyword matching

Keyword Search

Documents

https://en.wikipedia.org/wiki/Reality_television
https://en.wikipedia.org/wiki/Robert_Kardashian
https://en.wikipedia.org/wiki/Robert_Kardashian
https://en.wikipedia.org/wiki/Kris_Jenner
https://en.wikipedia.org/wiki/Kourtney_Kardashian
https://en.wikipedia.org/wiki/Kim_Kardashian
https://en.wikipedia.org/wiki/Khlo%C3%A9_Kardashian
https://en.wikipedia.org/wiki/Rob_Kardashian
https://en.wikipedia.org/wiki/Caitlyn_Jenner
https://en.wikipedia.org/wiki/Kendall_Jenner
https://en.wikipedia.org/wiki/Kylie_Jenner

6

Semantic Search

● What if that’s just not enough?

● What if I want to be able to make my query “Who is the richest
Kardashian sister?”

● How will it get what I’m trying to ask..

7

Queue: Language Models
the evolution

8

Vectors, or ‘Embeddings’

Transformer language models are amazing
● Neural networks trained on large amounts of text
● Turns text into vectors
● Can generalize quite well

They enable different NLP applications
● QA, Summarization, Retrieval, Translation, Reranking

Transformer based NLP will be a part of every application!
● Already used in Google Search, Translate, Product recommendations…

9

Answer

The Evolution From Extractive to Generative Models

Context
Challenges for the Reader
● Limited input length for reader models
● Speed
● Aggregation of predictions

Query

❓

10

Retriever + Reader
● Efficient for large collections of text
● Retriever acts as lightweight filter
● Passes candidates to Reader

Answer

Documents

 Reader: 3+ hours / query
 w/ Retriever: 0.5-2 sec / query

(7.5k docs from NQ dev, RoBERTa-base, Tesla V100)

The Evolution From Extractive to Generative Models

Query

❓

11

Generative Models
● Don’t need context
● Produce human-like answers

Answer

The Evolution From Extractive to Generative Models

Content

Query

❓
Query

❓

12

Generative Models
● Don’t need context
● Produce human-like answers

Answer

The Evolution From Extractive to Generative Models

Content

Query

❓
Query

❓

13

Generative Models
● Don’t need context
● Produce human-like answers

Answer

The Evolution From Extractive to Generative Models

Content

Query

❓
Query

❓

14

The Evolution From Extractive to Generative Models

These Language Models are readily available

● Companies like OpenAI and Cohere provide increasingly impressive LLMs

● There are many many open source models readily available on Hugging Face

● These models bridge the gap between a result being just a ‘search result’ to an
actual human-like answer

Next steps:

● How do we use these language models for various use cases?

14

15

What is Haystack?
● Fully open source NLP

framework built in Python
● The core NLP tasks covered
● Production focused

Integration with HF model hub
● Easy to use the latest models

Integration with OpenAI and
Cohere

● Use your API Key to plug in
LLMs in your applications

 It’s end-to-end, not just
models

● Connector between components
● Efficient storage options
● QoL features for all users

Document
store

Search pipelineIndexing pipeline

https://github.com/deepset-ai/haystack

16

Document stores

Core NLP Tasks covered

Data Connectors

● Elasticsearch, OpenSearch, SQL (standard options)
● FAISS, Pinecone, Milvus, Weaviate (vector optimized)

● File converters from txt, pdf, docx, markdown
● Web scraper to turn website into text
● Preprocessor to split long documents, clean text

Features of
Haystack

17

Features of
Haystack

Custom Pipelines

18

Features of
Haystack

Custom PipelinesExpose your applications via REST API

19

20

21

Documents

22

Documents

23

Documents Query

❓

24

Documents Query

❓

25

Documents Query

❓

26

Documents Query

❓

27

Documents Query

❓

28

Documents Query

❓

Answer

29

Let’s set the
scene:

● We have some data
● They’re all about Game of Thrones
● We want to do Questions

Answering

Document
store

We have a DocumentStore full of Game of Thrones
data

● Specifically, we have a FAISSDocumentStore
● We have .txt files about GoT in there

We want to retrieve the most relevant information
and pass only that to the reader

● We will use the EmbeddingRetriever:
○ This will allow us to generate vector representations for

our documents

Once we have candidate documents, we want to
extract an answer

● We will use the FARMReader:
○ This will allow us to use an extractive QA model from

Hugging Face

30

Some Examples with Haystack:
A simple Extractive QA pipeline

31

Some Examples with Haystack:
A simple Extractive QA pipeline

32

Some Examples with Haystack:
A simple Extractive QA pipeline

33

Some Examples with Haystack:
A simple Extractive QA pipeline

34

Answers in Haystack

Now let’s generate some
human-like answers

36

Some Examples with Haystack:
Answer Generation (with models from OpenAI)

37

Some Examples with Haystack:
Answer Generation (with models from OpenAI)

38

Some Examples with Haystack:
Answer Generation (with models from OpenAI)

39

Some Examples with Haystack:
Answer Generation (with models from OpenAI)

40

Some Examples with Haystack:
Answer Generation (with models from OpenAI)

41

Some Examples with Haystack:
Answer Generation (with models from OpenAI)

42

Some Examples with Haystack:
Answer Generation (with models from OpenAI)

43

Using Generative Models On Our Own Data

Query Answer

Documents

44

Some Examples
with Haystack:

Retrieval
Augmented
Answer
Generation

45

Some Examples with Haystack:
Retrieval Augmented Answer Generation

46

Some Examples with Haystack:
Retrieval Augmented Answer Generation

47

Some Examples with Haystack:
Retrieval Augmented Answer Generation

48

Conclusion

● Extractive models are great at retrieving knowledge from some context

● Generative models are cool and they provide human-like answers

● Combining a retrieval augmentation step in generative pipelines can let you
effectively use these models

● Haystack is an open source framework built in Python and it’s extended every day to
cover more and more NLP tasks

○ Contributions welcome :)

48

49

Where to find us

● We have an open Discord server
● We have regular meetups! Go check out the Open NLP

Meetup
● GitHub: Haystack is open source ⭐️
● Twitter @deepset_ai

Try out your first QA pipeline with
our tutorial:

Thank you!

50

Haystack Github
github.com/deepset-ai/haystack

Haystack Tutorials
https://haystack.deepset.ai/tutorials

Discord Server
https://haystack.deepset.ai/community

@deepset_ai @tuanacelik

 deepset

https://haystack.deepset.ai/community

	Slide: 1
	Slide: 2
	Agenda
	Keyword Search (1)
	Keyword Search (2)
	Semantic Search
	Queue: Language Models the evolution
	Vectors, or ‘Embeddings’
	The Evolution From Extractive to Generative Models
	The Evolution From Extractive to Generative Models
	The Evolution From Extractive to Generative Models (1)
	The Evolution From Extractive to Generative Models (2)
	The Evolution From Extractive to Generative Models (3)
	The Evolution From Extractive to Generative Models
	Slide: 12
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 13 (3)
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 14 (3)
	Slide: 14 (4)
	Slide: 14 (5)
	Slide: 14 (6)
	Slide: 14 (7)
	Slide: 14 (8)
	Slide: 15 (1)
	Slide: 15 (2)
	Slide: 16
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 17 (3)
	Slide: 17 (4)
	Slide: 18
	Slide: 19
	Slide: 20 (1)
	Slide: 20 (2)
	Slide: 20 (3)
	Slide: 20 (4)
	Slide: 20 (5)
	Slide: 20 (6)
	Slide: 20 (7)
	Using Generative Models On Our Own Data
	Slide: 22
	Slide: 23
	Slide: 24
	Slide: 25
	Conclusion
	Slide: 27
	Slide: 28

