
In SBOMs We Trust:
How Accurate, Complete, and

Actionable Are they?

Henrik Plate
Joseph Hejderup

FOSDEM’23

Henrik Plate
Security Researcher

Joseph Hejderup
Researcher

Agenda
1. Why do I need an SBOM?
2. Case Study - Why can the same app have different SBOMs?
3. Why is it helpful to enrich SBOMs with call graph information?
4. Takeaways

{
 "bomFormat": "CycloneDX",
 "specVersion": "1.4",
 "serialNumber": "urn:uuid:efa1076f-e57c-434c-ad56-3d5a0f401967",
 "version": 1,
 "metadata": {

"timestamp": "2023-01-26T18:06:34+01:00",
"tools": [{

 "name": "Tool A",
 }],

"component": {
 "bom-ref": "6e5f53bb4d29d051",
 "type": "container",
 "name": "eclipse/steady-rest-backend:3.2.5",
 "version": "sha256:0be6a5be5d727608b8f6d9dda73646db794b07a094c16bbbb802a952ed20ca1d"

}
 },
 "components": [

{
 "bom-ref": "pkg:maven/org.hdrhistogram/HdrHistogram@2.1.12?package-id=6d5f7d142788ba37",
 "type": "library",
 "group": "org.hdrhistogram",
 "name": "HdrHistogram",
 "version": "2.1.12",
 "cpe": "cpe:2.3:a:HdrHistogram:HdrHistogram:2.1.12:*:*:*:*:*:*:*",
 "purl": "pkg:maven/org.hdrhistogram/HdrHistogram@2.1.12",
 "properties": [...

Software Bill of Materials

Software product

Contained components

Creation timestamp and SBOM generator

SBOM format

Why do you need SBOMs?
Use-cases

- Inventory & visibility of software components
- Tracking licence violations
- Systematic view of security & operational risks
- Insights to current adoption and procurement practices of packages

Emerging regulations will require software vendors to provide SBOMs to their customers

- Candidate EU Cybersecurity Certification Scheme for Cloud Services (Dec 2020)
- Executive Order 14028 (May 2021)
- FDA Draft Guidance (Apr 2022), effective as of June 2023
- H.R. 7900 - National Defense Authorization Act for Fiscal Year 2023 (Aug 2022)
- Etc.

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

Agenda
1. What are SBOMs and why do I need one?
2. Case Study - Why can the same app have different SBOMs?
3. Why is it helpful to enrich SBOMs with call graph information?
4. Takeaways

Case-study
Idea

- SBOMs can be created at different stages in the software lifecycle, incl. from the
software source, at build time, or after build through binary analysis. [2] [1, pp. 6-7]

[1] Xia et al.: An Empirical Study on Software Bill of Materials: Where We Stand and the Road Ahead (2023)
[2] The Minimum Elements For a Software Bill of Materials (SBOM)

Sample Software

- Eclipse Steady 3.2.5
- Module “rest-backend”: Service developed with Java/Maven and Spring Boot
- Ground truth: 114 compile, 2 runtime, 41 test deps shown by Maven Dep. Plugin
- Docker image: eclipse/steady-rest-backend:3.2.5

https://arxiv.org/abs/2301.05362
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://github.com/eclipse/steady/tree/release-3.2.5
https://hub.docker.com/layers/eclipse/steady-rest-backend/3.2.5/images/sha256-7994ef797461f2f25db8748772e89016078f1101ca68abb03e3b54e34de5eaf8?context=explore

Background: Component identifiers
Context-specific component identifiers, e.g.

- Maven: groupId, artifactId, version (GAV) (optional: type, classifier)
Example: org.dom4j:dom4j:2.1.3

- Common Platform Enumeration (CPE): part, vendor, product, version, …
Example from CVE-2020-10683: cpe:2.3:a:dom4j_project:dom4j:*:*:*:*:*:*:*:*

 "bom-ref": "pkg:maven/dom4j/dom4j@2.1.3?package-id=7be91dd889ff562b",
 "type": "library",
 "name": "dom4j",
 "version": "2.1.3",
 "cpe": "cpe:2.3:a:dom4j:dom4j:2.1.3:*:*:*:*:*:*:*",
 "purl": "pkg:maven/dom4j/dom4j@2.1.3"

Universal component identifiers, e.g.,
- Package URL (PURL): Type, namespace, name, version, qualifiers

Finding & mapping such identifiers is key for metadata-centric tools

https://maven.apache.org/ref/3.8.4/maven-model/maven.html#class_dependency
https://search.maven.org/artifact/org.dom4j/dom4j
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe
https://nvd.nist.gov/vuln/detail/CVE-2020-10683

Approach
1) Select three open source SBOM generators
- A + B are generic solutions to scan directories, images, etc.

- C is a Maven plugin that hooks into Maven’s build process

2) Run at different points in time / on different targets

3) Compare SBOM data
a. Precision and recall of tools (identified components’ GAV vs. ground truth)

b. Venn diagrams show where tools (dis)agree (on the level of PURLs and simple names)

c. Additional properties

2.1) After git clone

A CB

2.3) On Docker image

A B

2.2) After mvn package

A CB

A
- precision = 0.5, recall = 0.06
- Does not resolve the deps declared in the pom.xml
- Few components, incl. test deps, some w/o version
- Additional properties: CPE combinations, file

B
- precision = 0.93, recall = 0.75
- Resolves dependencies in pom.xml, but some with wrong versions, and some missed altogether
- JARs in filesystem are ignored
- Additional properties: None

C
- precision = 1.0, recall = 1.0
- Correctly identifies all 114 compile + 2 runtime deps (PURLs contain additional qualifiers)
- Additional properties: Digests, description, license, external links

2.1) git clone & PURLs

2.1) git clone & names
Intersections increase due to ignoring

- A’s lack of version identifiers
- B’s wrong version identifiers
- C’s additional qualifiers

B

- Identifies the pom.xml itself as a component
of type “application”

- 23 missing components in comparison to C
are transitive deps

2.2) mvn package & PURLs
A

- precision = 0.56, recall = 0.44
- Improves due to processing the build result (self-contained Spring Boot app)
- Some groupIds are wrong, e.g., "purl": "pkg:maven/dom4j/dom4j@2.1.3"
- Test dependencies are included and partly redundant

(from pom.xml, src/test/resources, target/…)

B
- Same as before (precision = 0.93, recall = 0.75)
- Example PURL: "purl": "pkg:maven/org.dom4j/dom4j@2.1.3"

C
- Same as before (precision = 1.0, recall = 1.0)
- Example PURL: "purl" : "pkg:maven/org.dom4j/dom4j@2.1.3?type=jar"

2.3) Docker image & PURLs
OS-level components introduced through Docker image

A
- precision = 0.59, recall = 0.55 (Maven components only)
- "purl": "pkg:maven/org.objectweb.asm/asm@9.1"

- "purl": "pkg:maven/com.sun/activation@1.1"

- "purl": "pkg:deb/ubuntu/dash@

0.5.11+git20210903+057cd650a4ed-3build1?

arch=amd64&distro=ubuntu-22.04"

B
- precision = 0.96, recall = 0.91 (Maven components only)
- "purl": "pkg:maven/org.ow2.asm/asm@9.1"

- "purl": "pkg:maven/javax.activation/activation@1.1"

- "purl": "pkg:deb/ubuntu/dash@0.5.11+git20210903+057cd650a4ed-3build1?distro=ubuntu-22.04"

Differences due to
- Maven groupIds: “org.objectweb.asm” vs. “org.ow2.asm”
- Qualifiers: “arch=amd64&distro=ubuntu-22.04” vs. “distro=ubuntu-22.04”

2.3) Docker image & names
A

- Unique components (true-positive) found in /opt/java/openjdk
"purl": "pkg:generic/java@11.0.16.1+1"
"purl": "pkg:maven/jrt-fs/jrt-fs@11.0.16.1"

B
- Unique component (true-positive)

"purl": "pkg:maven/net.bytebuddy/byte-buddy@1.10.22"

Comments
- The Java runtime is a big miss of B
- A and B have false-positive "purl": "pkg:maven/net.bytebuddy/byte-buddy-dep@1.10.22"

(maybe due to the nested JAR containing multiple pom.xml)

Again: Attention
- Overlap on smallest denominator
- False-negatives and false-positives when considering the complete identifier (GAV)
- Name itself is not sufficient for vuln. search

Case-study: Lessons learned
Reasons for getting different SBOMs

- Integrated vs. generic tools
- Production vs. test components (different defaults; scope is not reflected)
- Execution during different life cycle phases (recommended field [1], but not present)

[1] The Minimum Elements For a Software Bill of Materials (SBOM)

Standard data format but…

- Different fields (license, digests, CPEs, …)
- Same fields populated differently (PURLs)

Not discussed here:

- Time of dependency resolution (in case of version ranges)
- Platform

https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

Agenda
1. What are SBOMs and why do I need one?
2. Case Study - Why can the same app have different SBOMs?
3. Why is it helpful to enrich SBOMs with call graph information?
4. Takeaways

The standard view

APP

LIB 1 LIB 2 LIB 3

LIB 4

- Imported Components
- Relationship between Components
- Reachability & Impact analysis

The stadard view augmented with call graphs

APP

LIB 1 LIB 2 LIB 3

LIB 4

- Utilized Code functionality
- Relationship between Code entities
- Pinpoint exactly how components

are utilized

Example: App does not actually use LIB 4,
should we include it in our SBOM?

APP

LIB 1 LIB 2 LIB 3

LIB 4

APP

LIB 1 LIB 2 LIB 3

LIB 4

APP

LIB 1 LIB 3

LIB 4

API Level
= package functionality

Example: Package pest_meta 2.12

One line of import but not other usage!

 Empirical Study - Rust’s Crates.io!

RQ: What is the difference in the number of
reported dependencies between traditional
metadata-based approaches vs program analysis
approaches?

Hejderup, J., Beller, M., Triantafyllou, K., & Gousios, G. (2022). Präzi: from package-based to call-based dependency networks. Empirical Software Engineering, 27(5), 1-42.

Gap

 6

 17

No close approximation
of each other!

SBOM: Metadata vs Call Graph

Hejderup, J., Beller, M., Triantafyllou, K., & Gousios, G. (2022). Präzi: from package-based to call-based dependency networks. Empirical Software Engineering, 27(5), 1-42.

Call Graph

Metadata

used()

Lib 3
v1.2

We make the general assumption that we use
- ALL APIs of all direct dependencies,
- and then ALL APIs of transitive dependencies

 Why is there such a huge difference?

Call Graphs: Lessons learned
Security & Operational Risks are challenging to quantify with an SBOM

- Embedding function call information can help:
- Pinpoint & Prioritize DevSecOps risks
- Understand reuse of components: What are my top critical and non critical

dependencies?
- Package-level information is not enough: we need more layers of information that

serve different users of SBOMs
- Developers debug function call traces and not package relationships!
- Security folks need holistic views not code examples!

Agenda
1. What are SBOMs and why do I need one?
2. Case Study - Why can the same app have different SBOMs?
3. Why is it helpful to enrich SBOMs with call graph information?
4. Takeaways

Takeaways
- Standardized SBOM formats are necessary but not sufficient [2].

- More context is needed for actionable insights, e.g., call graph information.

- Consumers can hardly verify the correctness of SBOMs (and associated

VEX documents [1]), especially for proprietary software .

- The evaluation and comparison of SBOM generators requires a benchmark

(comparable to the DaCapo benchmark for Java).

[1] Xia et al.: An Empirical Study on Software Bill of Materials: Where We Stand and the Road Ahead (2023)
[2] The Minimum Elements For a Software Bill of Materials (SBOM)

https://www.dacapobench.org/
https://arxiv.org/abs/2301.05362
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

Joseph Hejderup
joseph@endor.ai

Henrik Plate
henrik@endor.ai

mailto:joseph@endor.ai
mailto:henrik@endor.ai

