
Graphing Tools for Scheduler Tracing

Julia Lawall, Inria
February 5, 2023

1



What is a task scheduler?

An important part of the Linux kernel:

• Places tasks on cores on fork, wakeup, or load balancing.

• Selects a task on the core to run when the core becomes idle.

• kernel/sched/core.c, kernel/sched/fair.c

We are interested in task placement in this talk.

2



What is a task scheduler?

An important part of the Linux kernel:

• Places tasks on cores on fork, wakeup, or load balancing.

• Selects a task on the core to run when the core becomes idle.

• kernel/sched/core.c, kernel/sched/fair.c

We are interested in task placement in this talk.

2



How can a task scheduler impact application performance?

• A scheduler has to make decisions.

• Poor decisions can slow tasks down, sometimes in the long term.

3



Issues: Work conservation

The machine
core 0 core 1 core 2 core 3

Where to put waking task T1?

• Maybe anywhere is fine... g

Core 0 would not be a good choice.

Work conservation: No core should be overloaded if any core is idle.
Locality:

4



Issues: Work conservation

The machine
core 0 core 1 core 2 core 3

Where to put waking task T1?

• Maybe anywhere is fine... g

Core 0 would not be a good choice.

Work conservation: No core should be overloaded if any core is idle.
Locality:

4



Issues: Work conservation

The machine
core 0 core 1 core 2 core 3

Where to put waking task T1?

• Maybe anywhere is fine... g

Core 0 would not be a good choice.

Work conservation: No core should be overloaded if any core is idle.
Locality:

4



Issues: Work conservation

The machine
core 0 core 1 core 2 core 3
T1

Where to put waking task T1?

• Maybe anywhere is fine... g

Core 0 would not be a good choice.

Work conservation: No core should be overloaded if any core is idle.
Locality:

5



Issues: Work conservation

The machine
core 0 core 1 core 2 core 3
T1

Where to put waking task T2?

• Core 1, core 2, or core 3 might be fine.

• Core 0 would not be a good choice.

Work conservation: No core should be overloaded if any core is idle.
Locality:

6



Issues: Work conservation

The machine
core 0 core 1 core 2 core 3
T1

Where to put waking task T2?

• Core 1, core 2, or core 3 might be fine.

• Core 0 would not be a good choice.

Work conservation: No core should be overloaded if any core is idle.
Locality:

6



Issues: Work conservation

The machine
core 0 core 1 core 2 core 3
T1 T2

Where to put waking task T2?

• Core 1, core 2, or core 3 might be fine.

• Core 0 would not be a good choice.

Work conservation: No core should be overloaded if any core is idle.
Locality:

7



Issues: Locality

A two-socket machine
core 0 core 1 core 2 core 3
T1

Where to put waking task T2?

• Core 1 is good if T2 has previously allocated memory on that socket.

• Core 1 is good if T2 communicates a lot with T1.

• Core 2 or Core 3 could cause slowdowns.

Locality: Tasks should be near their data.
Locality: Tasks sharing data should be on the same socket.

8



Issues: Locality

A two-socket machine
core 0 core 1 core 2 core 3
T1

Where to put waking task T2?

• Core 1 is good if T2 has previously allocated memory on that socket.

• Core 1 is good if T2 communicates a lot with T1.

• Core 2 or Core 3 could cause slowdowns.

Locality: Tasks should be near their data.
Locality: Tasks sharing data should be on the same socket. 8



A challenge

• The task scheduler can have a large impact on application performance.

• But the task scheduler is buried deep in the OS...

• How to understand what the task scheduler is doing?

9



A challenge

• The task scheduler can have a large impact on application performance.

• But the task scheduler is buried deep in the OS...

• How to understand what the task scheduler is doing?

9



Some help available

trace-cmd: Collects ftrace information, including scheduling events.

trace-cmd -e sched -q -o trace.dat ./mycommand

Sample trace:
C1 CompilerThre-166659 [026] 9539.524366: sched_wakeup: C1 CompilerThre:166654 [120] success=1 CPU:062

<idle>-0 [062] 9539.524369: sched_switch: swapper/62:0 [120] R ==> C1 CompilerThre:166654 [120]
C1 CompilerThre-166659 [026] 9539.524369: sched_switch: C1 CompilerThre:166659 [120] S ==> swapper/26:0 [120]

java-166654 [062] 9539.524372: sched_waking: comm=C1 CompilerThre pid=166660 prio=120 target_cpu=028

10



Some help available

kernelshark: Graphical front end for trace-cmd data.

Hard to get an overview, of e.g. 128 cores.

11



Some help available

kernelshark: Graphical front end for trace-cmd data.

Hard to get an overview, of e.g. 128 cores.
11



Our target: Large multicore servers

Goals for a trace-visualization tool:

• See activity on all cores at once.

• Produce files that can be shared (pdfs).

• Caveat: Interactivity (e.g., zooming) completely abandoned.

12



Our tools

• dat2graph: Horizontal bar graph showing what is happening on each core
at each time.

• running_waiting: Line graph of how many tasks are running or waiting on
a runqueue at any point in time.

Both publicly available.

13



Motivating example (a commit in Linux 5.11)

commit d8fcb81f1acf651a0e50eacecca43d0524984f87
Author: Julia Lawall <Julia.Lawall@inria.fr>
Date: Thu Oct 22 15:15:50 2020 +0200

sched/fair: Check for idle core in wake_affine
...

diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -5813,6 +5813,9 @@ wake_affine_idle(int this_cpu, int prev_cpu, int sync)

if (sync && cpu_rq(this_cpu)->nr_running == 1)
return this_cpu;

+ if (available_idle_cpu(prev_cpu))
+ return prev_cpu;
+

return nr_cpumask_bits;
} 14



Example

NAS benchmark suite: “The NAS Parallel Benchmarks (NPB) are a small set of
programs designed to help evaluate the performance of parallel supercomputers.
The benchmarks are derived from computational fluid dynamics (CFD)
applications...”

Our focus:
UA: “Unstructured Adaptive mesh, dynamic and irregular memory access”

• N tasks on N cores.

15



UA runtimes prior to my patch

4-socket, 128 core, Intel 6130.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

runs (sorted by increasing runtime)

se
co
nd
s

Why so much variation?

16



UA runtimes prior to my patch

4-socket, 128 core, Intel 6130.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

runs (sorted by increasing runtime)

se
co
nd
s

Why so much variation?

16



UA with dat2graph

A fast run (dat2graph2 --socket-order ua..._5.dat).

0 5 10 15 20 25

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 socketorder, duration: 22.221348 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

17



UA with dat2graph

A slow run (dat2graph2 --socket-order ua..._2.dat).

0 5 10 15 20 25

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_2 socketorder, duration: 28.388164 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

18



UA with dat2graph

Another perspective on the slow run.

0 5 10 15 20 25

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_2_rw

0

50

100

n
u

m
b

er
 o

f 
th

re
a

d
s

all threads

running threads

19



The problem

• Tasks are moving around.

• Some cores are overloaded, so tasks run less often.

20



The fast run revisited

Tasks move around sometimes, for example around 3 seconds:

0 5 10 15 20 25

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 socketorder, duration: 22.221348 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

21



Zooming in

dat2graph2 --socket-order --min 3 --max 3.2 --target ua
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5.dat

3.0 3.1 3.2

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3 socketorder upto_3.2, duration: 3.203655 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

22



Focusing on the first gap

What are the black lines?

3.076 3.077

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.0755 socketorder upto_3.0775, duration: 3.092353 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

23



Focusing on the first gap

What are the black lines?

3.076 3.077

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.0755 socketorder upto_3.0775, duration: 3.092353 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

24



Color by command

dat2graph2 --socket-order --min 3.0755 --max 3.0765
--color-by-command
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5.dat

3.0756 3.0758 3.0760 3.0762 3.0764

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.0755 socketorder upto_3.0765 color, duration: 3.076781 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

ua.C.x: 1.6038-3.0765: 72.40 (134, 128 pids)

kcompactdX: 3.0757-3.0757: 0.0001 (4, 4 pids)

kworker: 3.0757-3.0757: 0.0000 (2, 2 pids) 47, 79

25



Assessment

• Kernel threads show up from time to time, to provide needed services.

• Having high priority, they preempt the running task.

• Some tasks get behind, leading to gaps until resynchronization.

• No application-application overloads introduced.

• Life goes on...

26



Assessment

• Kernel threads show up from time to time, to provide needed services.

• Having high priority, they preempt the running task.

• Some tasks get behind, leading to gaps until resynchronization.

• No application-application overloads introduced.

• Life goes on...

26



Moving a bit to the right

3.148 3.150 3.152

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.147 socketorder upto_3.153, duration: 3.171653 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

27



Load balancing

Pid 12569 gets load balanced from core 0 to core 96 (off socket).

3.148 3.150 3.152
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.147 socketorder upto_3.153, duration: 3.171653 seconds

0

50

100

co
re

 (s
oc

ke
t o

rd
er

)

28



A cascade of migrations

• 12569 gets load balanced from core 0 to core 96.

• 12561 wakes for core 96 but is moved to core 99.

• 12564 wakes for core 99 but is moved to core 100.

• 12568 wakes for core 100 but is moved to core 111.

• Each task finds a place on the fourth socket, but one too many tasks want to
be placed there.

29



A cascade of migrations

• 12569 gets load balanced from core 0 to core 96.

• 12561 wakes for core 96 but is moved to core 99.

• 12564 wakes for core 99 but is moved to core 100.

• 12568 wakes for core 100 but is moved to core 111.

• Each task finds a place on the fourth socket, but one too many tasks want to
be placed there.

29



Overload

UA-UA overload (no black dot)

3.148 3.150 3.152
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.147 socketorder upto_3.153, duration: 3.171653 seconds

0

50

100

co
re

 (s
oc

ke
t o

rd
er

)

30



Running-waiting view

3.148 3.150 3.152

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5_rw_from_3.147_upto_3.153

0

50

100

n
u

m
b

er
 o

f 
th

re
a

d
s

all threads

running threads

31



Understanding the source of the overload

3.13 3.14 3.15

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.123 socketorder upto_3.153, duration: 3.171653 seconds

68

111

co
re

 (
so

ck
et

 o
rd

er
)

• 12655 on core 68 wakes 12549 for core 111

• 111 is idle!
• But 12549 is placed on core 111, where it has to wait for 12655
• Huhhh???? (Remember work conservation).

32



Understanding the source of the overload

3.13 3.14 3.15

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.123 socketorder upto_3.153, duration: 3.171653 seconds

68

111

co
re

 (
so

ck
et

 o
rd

er
)

• 12655 on core 68 wakes 12549 for core 111
• 111 is idle!

• But 12549 is placed on core 111, where it has to wait for 12655
• Huhhh???? (Remember work conservation).

32



Understanding the source of the overload

3.13 3.14 3.15

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.123 socketorder upto_3.153, duration: 3.171653 seconds

68

111

co
re

 (
so

ck
et

 o
rd

er
)

• 12655 on core 68 wakes 12549 for core 111
• 111 is idle!
• But 12549 is placed on core 111, where it has to wait for 12655

• Huhhh???? (Remember work conservation).

32



Understanding the source of the overload

3.13 3.14 3.15

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.123 socketorder upto_3.153, duration: 3.171653 seconds

68

111

co
re

 (
so

ck
et

 o
rd

er
)

• 12655 on core 68 wakes 12549 for core 111
• 111 is idle!
• But 12549 is placed on core 111, where it has to wait for 12655
• Huhhh???? (Remember work conservation).

32



Understanding the source of the overload

3.13 3.14 3.15

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.123 socketorder upto_3.153, duration: 3.171653 seconds

68

111

co
re

 (
so

ck
et

 o
rd

er
)

• 111 is idle when 12655 wakes, but it was used by a kworker recently.
• The load average is non zero.
• The scheduler prefers to put 12655 on the socket of the waker.
• This socket is all full, so there is an overload (12655 has to wait).

33



Back to the patch

diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -5813,6 +5813,9 @@ wake_affine_idle(int this_cpu, int prev_cpu, int sync)

if (sync && cpu_rq(this_cpu)->nr_running == 1)
return this_cpu;

+ if (available_idle_cpu(prev_cpu))
+ return prev_cpu;
+

return nr_cpumask_bits;
}

34



Benefit on UA

1 2 3 4 5 6 7 8 9 10
0

10

20

30

runs (sorted by increasing runtime)

se
co
nd
s

before
after

35



Benefit on another application

h2: part of the DaCapo Java benchmark suite.

0 20 40 60 80 100

h2_R10_CN_yeti-2_5.10.0beforemypatch_powersave-active_4 socketorder, duration: 105.930135 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

0 20 40 60 80 100

h2_R10_CN_yeti-2_5.10.0aftermypatch_powersave-active_5 socketorder, duration: 69.433550 seconds

0

50

100

co
re

 (
so

ck
et

 o
rd

er
)

before the patch (81-105sec) after the patch (63-69 sec)

36



Conclusion

• Understanding scheduler behavior requires studying precise scheduling
actions.

• Different perspectives provide complementary information.

• Some tools that I have found useful for large multicore machines:
– dat2graph2: Who is running, when and where?

– running_waiting: How many tasks are running, how many are waiting?

• Future work: Faster graph generation? More configurability?

https://gitlab.inria.fr/schedgraph/schedgraph.git

37



Conclusion

• Understanding scheduler behavior requires studying precise scheduling
actions.

• Different perspectives provide complementary information.

• Some tools that I have found useful for large multicore machines:
– dat2graph2: Who is running, when and where?

– running_waiting: How many tasks are running, how many are waiting?

• Future work: Faster graph generation? More configurability?

https://gitlab.inria.fr/schedgraph/schedgraph.git

37


