Graphing Tools for Scheduler Tracing

1

Julia Lawall, Inria February 5, 2023 An important part of the Linux kernel:

- Places tasks on cores on fork, wakeup, or load balancing.
- Selects a task on the core to run when the core becomes idle.
- kernel/sched/core.c, kernel/sched/fair.c

An important part of the Linux kernel:

- Places tasks on cores on fork, wakeup, or load balancing.
- Selects a task on the core to run when the core becomes idle.
- kernel/sched/core.c, kernel/sched/fair.c

We are interested in task placement in this talk.

How can a task scheduler impact application performance?

- A scheduler has to make decisions.
- Poor decisions can slow tasks down, sometimes in the long term.

Issues: Work conservation

The machine

core 0 core 1 core 2 core 3

The machine

core 0 core 1 core 2 core 3

Where to put waking task **T1**?

The machine core 0 core 1 core 2 core 3

Where to put waking task **T1**?

• Maybe anywhere is fine...

The machinecore 0core 1core 2core 3T1

Where to put waking task **T1**?

• Maybe anywhere is fine...

The machine

core 0 core 1 core 2 core 3

T1			
----	--	--	--

Where to put waking task T2?

The machinecore 0core 1core 2core 3T1

Where to put waking task **T2**?

- Core 1, core 2, or core 3 might be fine.
- Core 0 would not be a good choice.

The machine

core 0 core 1 core 2 core 3

T1		T2	
----	--	----	--

Where to put waking task **T2**?

- Core 1, core 2, or core 3 might be fine.
- Core 0 would not be a good choice.

Work conservation: No core should be overloaded if any core is idle.

Issues: Locality

A two-socket machine

core 0 core 1 core 2 core 3

T1			
----	--	--	--

A two-socket machine

core 0 core 1 core 2 core 3

T1			
----	--	--	--

Where to put waking task T2?

- Core 1 is good if T2 has previously allocated memory on that socket.
- Core 1 is good if **T2** communicates a lot with **T1**.
- Core 2 or Core 3 could cause slowdowns.

- The task scheduler can have a large impact on application performance.
- But the task scheduler is buried deep in the OS...

- The task scheduler can have a large impact on application performance.
- But the task scheduler is buried deep in the OS...
- How to understand what the task scheduler is doing?

trace-cmd: Collects ftrace information, including scheduling events.

```
trace-cmd -e sched -q -o trace.dat ./mycommand
```

Sample trace:

C1 CompilerThre-166659 [026] 9539.524366: sched_wakeup: C1 CompilerThre:166654 [120] success=1 CPU:062 <idle>-0 [062] 9539.524369: sched_switch: swapper/62:0 [120] R ==> C1 CompilerThre:166654 [120] C1 CompilerThre-166659 [026] 9539.524369: sched_switch: C1 CompilerThre:166659 [120] S ==> swapper/26:0 [120] java-166654 [062] 9539.524372: sched_waking: comm=C1 CompilerThre.pid=166660 prio=120 target_cpu=028

Some help available

kernelshark: Graphical front end for trace-cmd data.

		Tools Help				
ointer: [3163.915176					
< +	- > ++	Marker A		Marker B A,B C	Jeita:	
		3153.5924	06		3158.744107	3163.895809
		(
0	PU 0					
0	00					
C	PU 1					
0						
Search: C	olumn #	* Contain	15	* Next)Prev	Graph follows	
Search: C # CPU	olumn #			* Next Prev		
		Task Pl		tency Event	Graph follows	
¢ CPU	Time Stamp	Task Pi tmp172c90.sh 9	PID Lat	tency Event sched/sched_process_exec	Graph follows	
¢ CPU 0 52	Time Stamp 3153.592	Task Pi tmp172c90.sh 9 tmp172c90.sh 9	PID Lai 985138	tency Event sched/sched_process_exec sched/sched_waking	Graph follows Info filename=/tmp/tmp172c90.sh pid=985138 old_pid=985138 comm=nscd pid=1145 prio=120 target_cpu=039	
 CPU 52 52 	Time Stamp 3153.592 3153.592	Task Pi tmp172c90.sh 9 tmp172c90.sh 9 tmp172c90.sh 9 tmp172c90.sh 9	PID Lai 985138 985138 d.	tency Event sched/sched_process_exec sched/sched_waking sched/sched_wake_idle_without_ip	Graph follows Info filename=/tmp/tmp172c90.sh pid=985138 old_pid=985138 comm=nscd pid=1145 prio=120 target_cpu=039	
 CPU 52 52 52 52 	Time Stamp 3153.592 3153.592 3153.592	Task Pi tmp172c90.sh 9 tmp172c90.sh 9 tmp172c90.sh 9 tmp172c90.sh 9 tmp172c90.sh 9 tmp172c90.sh 9	PID Lai 985138 985138 d. 985138 d.	tency Event sched/sched_process_exec sched/sched_waking sched/sched_wake_idle_without_ip sched/sched_switch	Graph follows Info filename.ntmpttmp172c90.sh.pid=985138.oid_pid=985138 comm=nscd pid=1145 prio=120 target_cpu=039 N cpu=39	

Some help available

kernelshark: Graphical front end for trace-cmd data.

Hard to get an overview, of e.g. 128 cores.

Goals for a trace-visualization tool:

- \cdot See activity on all cores at once.
- Produce files that can be shared (pdfs).
- Caveat: Interactivity (e.g., zooming) completely abandoned.

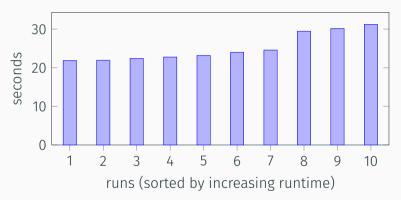
- **dat2graph**: Horizontal bar graph showing what is happening on each core at each time.
- **running_waiting**: Line graph of how many tasks are running or waiting on a runqueue at any point in time.

Both publicly available.

Motivating example (a commit in Linux 5.11)

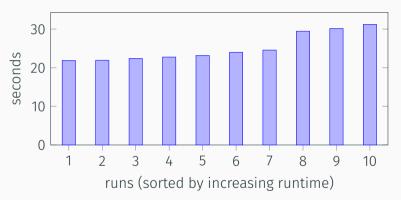
```
commit d8fcb81f1acf651a0e50eacecca43d0524984f87
Author: Julia Lawall <Julia.Lawall@inria.fr>
      Thu Oct 22 15:15:50 2020 +0200
Date:
sched/fair: Check for idle core in wake affine
. . .
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
and -5813.6 +5813.9 and wake affine idle(int this cpu, int prev cpu, int sync)
        if (sync && cpu rq(this cpu)->nr running == 1)
                return this cpu:
        if (available idle cpu(prev cpu))
+
                return prev cpu:
+
÷
        return nr cpumask bits;
```

NAS benchmark suite: "The NAS Parallel Benchmarks (NPB) are a small set of programs designed to help evaluate the performance of parallel supercomputers. The benchmarks are derived from computational fluid dynamics (CFD) applications..."


Our focus:

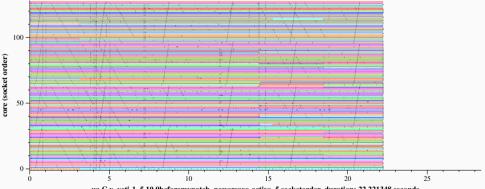
UA: "Unstructured Adaptive mesh, dynamic and irregular memory access"

• N tasks on N cores.


UA runtimes prior to my patch

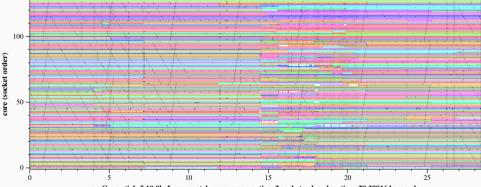
4-socket, 128 core, Intel 6130.

UA runtimes prior to my patch

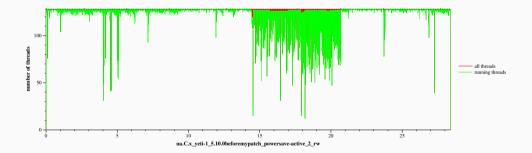

4-socket, 128 core, Intel 6130.

Why so much variation?

UA with dat2graph

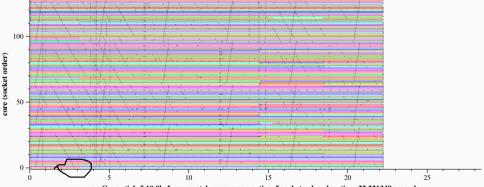

A fast run (dat2graph2 --socket-order ua..._5.dat).

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 socketorder, duration: 22.221348 seconds


UA with dat2graph

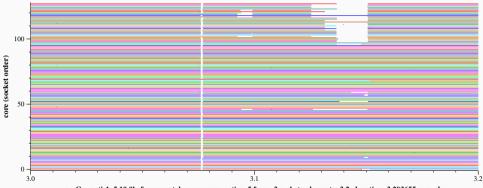
A slow run (dat2graph2 --socket-order ua..._2.dat).

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_2 socketorder, duration: 28.388164 seconds


Another perspective on the slow run.

- Tasks are moving around.
- Some cores are overloaded, so tasks run less often.

The fast run revisited

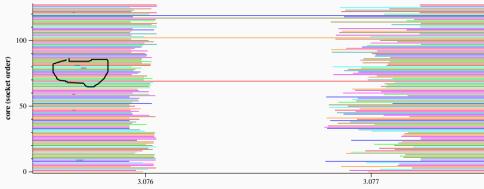

Tasks move around sometimes, for example around 3 seconds:

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 socketorder, duration: 22.221348 seconds

Zooming in

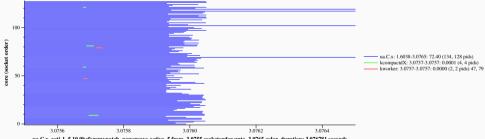
dat2graph2 --socket-order --min 3 --max 3.2 --target ua ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5.dat

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3 socketorder upto_3.2, duration: 3.203655 seconds


Focusing on the first gap

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.0755 socketorder upto_3.0775, duration: 3.092353 seconds

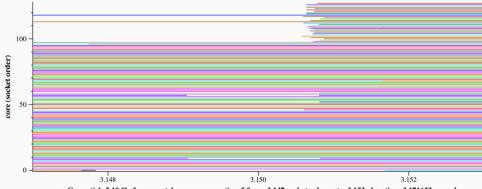
Focusing on the first gap


What are the black lines?

ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.0755 socketorder upto_3.0775, duration: 3.092353 seconds

Color by command

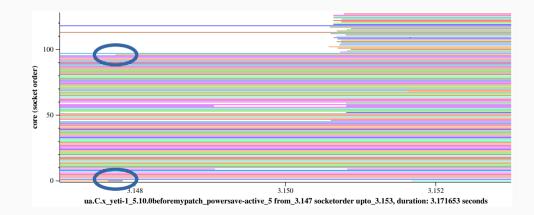
dat2graph2 --socket-order --min 3.0755 --max 3.0765 --color-by-command ua.C.x yeti-1 5.10.0beforemypatch powersave-active 5.dat



ua.C.x veti-1 5.10.0beforemynatch powersave-active 5 from 3.0755 socketorder upto 3.0765 color, duration: 3.076781 seconds

- Kernel threads show up from time to time, to provide needed services.
- Having high priority, they preempt the running task.
- Some tasks get behind, leading to gaps until resynchronization.
- No application-application overloads introduced.

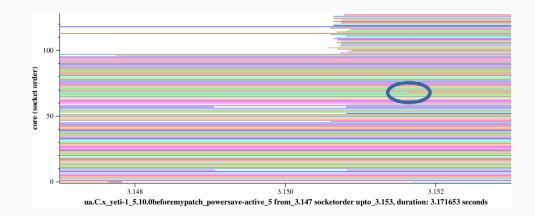
- Kernel threads show up from time to time, to provide needed services.
- Having high priority, they preempt the running task.
- Some tasks get behind, leading to gaps until resynchronization.
- No application-application overloads introduced.
- Life goes on...


Moving a bit to the right

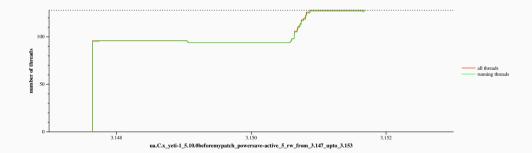
ua.C.x_yeti-1_5.10.0beforemypatch_powersave-active_5 from_3.147 socketorder upto_3.153, duration: 3.171653 seconds

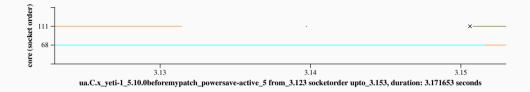
Load balancing

Pid 12569 gets load balanced from core 0 to core 96 (off socket).

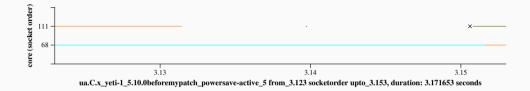


- 12569 gets load balanced from core 0 to core 96.
- 12561 wakes for core 96 but is moved to core 99.
- 12564 wakes for core 99 but is moved to core 100.
- 12568 wakes for core 100 but is moved to core 111.

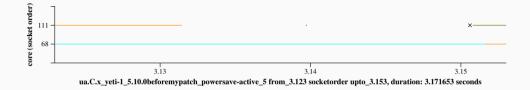

- 12569 gets load balanced from core 0 to core 96.
- 12561 wakes for core 96 but is moved to core 99.
- 12564 wakes for core 99 but is moved to core 100.
- 12568 wakes for core 100 but is moved to core 111.
- Each task finds a place on the fourth socket, but one too many tasks want to be placed there.

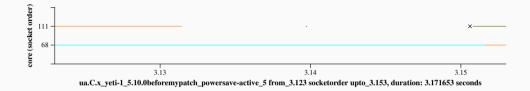

Overload

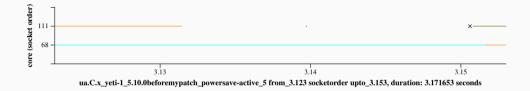
UA-UA overload (no black dot)



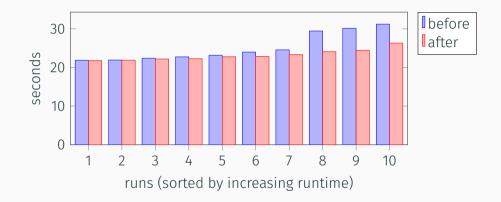
Running-waiting view



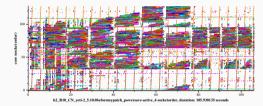

• 12655 on core 68 wakes 12549 for core 111


- 12655 on core 68 wakes 12549 for core 111
- 111 is idle!

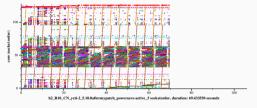
- 12655 on core 68 wakes 12549 for core 111
- 111 is idle!
- But 12549 is placed on core 111, where it has to wait for 12655



- 12655 on core 68 wakes 12549 for core 111
- 111 is idle!
- But 12549 is placed on core 111, where it has to wait for 12655
- Huhhh???? (Remember work conservation).


- 111 is idle when 12655 wakes, but it was used by a kworker recently.
- The load average is non zero.
- The scheduler prefers to put 12655 on the socket of the waker.
- This socket is all full, so there is an overload (12655 has to wait).

Benefit on UA



Benefit on another application

h2: part of the DaCapo Java benchmark suite.

before the patch (81-105sec)

after the patch (63-69 sec)

Conclusion

- Understanding scheduler behavior requires studying precise scheduling actions.
- Different perspectives provide complementary information.
- Some tools that I have found useful for large multicore machines:
 - dat2graph2: Who is running, when and where?
 - running_waiting: How many tasks are running, how many are waiting?
- Future work: Faster graph generation? More configurability?

Conclusion

- Understanding scheduler behavior requires studying precise scheduling actions.
- Different perspectives provide complementary information.
- Some tools that I have found useful for large multicore machines:
 - dat2graph2: Who is running, when and where?
 - running_waiting: How many tasks are running, how many are waiting?
- Future work: Faster graph generation? More configurability?

https://gitlab.inria.fr/schedgraph/schedgraph.git