
Where does that code come from?
Git checkout authentication
to the rescue of supply chain security

Ludovic Courtès
FOSDEM, 4 February 2023

https://guix.gnu.org

https://guix.gnu.org

(define-public hello
(package

(name "hello")
(version "2.12.1")
(source (origin

(method url-fetch)
(uri (string-append "mirror://gnu/hello/hello-"

version ".tar.gz"))
(sha256 (base32 "0wqd...dz6"))))

(build-system gnu-build-system)
(inputs (list gnu-gettext))
(synopsis "Greetings, FOSDEM!")
(description "That’s what a Guix package looks like.")
(home-page "https://gnu.org/s/hello")
(license license:gpl3+)))

$ guix build hello

/gnu/store/ h2g4sf72... -hello-2.12.1

$ guix gc --references /gnu/store/...-hello-2.12.1
/gnu/store/...-glibc-2.33
/gnu/store/...-gcc-10.3.0-lib
/gnu/store/...-hello-2.12.1

isolated build: chroot, separate name spaces, etc.

$ guix build hello
/gnu/store/ h2g4sf72... -hello-2.12.1

$ guix gc --references /gnu/store/...-hello-2.12.1
/gnu/store/...-glibc-2.33
/gnu/store/...-gcc-10.3.0-lib
/gnu/store/...-hello-2.12.1

hash of all the dependencies

$ guix build hello
/gnu/store/ h2g4sf72... -hello-2.12.1

$ guix gc --references /gnu/store/...-hello-2.12.1
/gnu/store/...-glibc-2.33
/gnu/store/...-gcc-10.3.0-lib
/gnu/store/...-hello-2.12.1

$ guix build hello
/gnu/store/ h2g4sf72... -hello-2.12.1

$ guix gc --references /gnu/store/...-hello-2.12.1
/gnu/store/...-glibc-2.33
/gnu/store/...-gcc-10.3.0-lib
/gnu/store/...-hello-2.12.1(nearly) bit-identical for everyone

$ guix build hello
/gnu/store/ h2g4sf72... -hello-2.12.1

$ guix gc --references /gnu/store/...-hello-2.12.1
/gnu/store/...-glibc-2.33
/gnu/store/...-gcc-10.3.0-lib
/gnu/store/...-hello-2.12.1

https://reproducible-builds.org

https://reproducible-builds.org

https://bootstrappable.org

https://bootstrappable.org

https://bootstrappable.org

→ “GNU Mes—The Full-Source Bootstrap”
Jan Nieuwenhuizen, FOSDEM 2021

https://bootstrappable.org
https://archive.fosdem.org/2021/schedule/event/gnumes/
https://archive.fosdem.org/2021/schedule/event/gnumes/

$ guix pull

Updating channel ’guix’ from Git repository...

https://theupdateframework.org

https://theupdateframework.org

https://theupdateframework.org

?

https://theupdateframework.org

(define python
(package ...))

guix build python
/gnu/store/...-python-3.9.6

Git repository

test

git push

(define python
(package ...))

user

guix build python
/gnu/store/...-python-3.9.6

Git repository

test

git push

gu
ix

pu
ll

(define python
(package ...))

user

guix build python
/gnu/store/...-python-3.9.6 build farm

Git repository

test

git push

get binaries

pull

gu
ix

pu
ll

(define python
(package ...))

user

guix build python
/gnu/store/...-python-3.9.6 build farm

Git repository

test

git push

get binaries

pull

gu
ix

pu
ll

https://docs.github.com/en/authentication/managing-commit-signature-verification

https://docs.github.com/en/authentication/managing-commit-signature-verification

authenticate: establish the
authenticity of something

authenticity: undisputed credibility
— WordNet

I assume attacker might gain access to the repo
I protect against malicious changes
I ... including downgrade attacks

I support o�-line authentication
I support changing authorizations

I assume attacker might gain access to the repo
I protect against malicious changes
I ... including downgrade attacks
I support o�-line authentication
I support changing authorizations

A
author: Alice

B
author: Alice

C
author: Bob

D
author: Alice

E
author: Bob

F
author: Alice

The .guix-authorizations file
(authorizations

(version 0)

;; Authorized committers OpenPGP fingerprints:
(("AD17 A21E F8AE D8F1 CC02 DBD9 F8AE D8F1 765C 61E3"

(name "alice"))
("2A39 3FFF 68F4 EF7A 3D29 12AF 68F4 EF7A 22FB B2D5"

(name "bob"))
("CABB A931 C0FF EEC6 900D 0CFB 090B 1199 3D9A EBB5"

(name "charlie"))))

Commit is authentic if andonly if
signed by one of the keys in the
.guix-authorizationsfile of each
parent commit.

the “authorization invariant”

A
author: Alice

authorized: Alice

B
author: Alice

authorized: Alice, Bob

C
author: Bob

authorized: Alice, Bob

D
author: Alice

authorized: Alice, Bob

E
author: Bob

authorized: Alice, Bob

F
author: Alice

authorized: Alice, Bob

A
author: Alice

authorized: Alice

B
author: Alice

authorized: Alice, Bob

C
author: Bob

authorized: Alice, Bob

D
author: Alice

authorized: Alice, Bob

E
author: Bob

authorized: Alice, Bob

E'
author: Bob

authorized: Bob

F
author: Alice

authorized: Bob

introducing a repository

A

B
introductory commit

C

D E

F

G

H

(channel
(name ’my-channel)
(url "https://example.org/my-channel.git")
(introduction
(make-channel-introduction
"6f0d8cc0d88abb59c324b2990bfee2876016bb86"
(openpgp-fingerprint
"CABB A931 C0FF EEC6 900D 0CFB 090B 1199 3D9A EBB5"))))

$ guix pull

--url=https://example.org/evil.git

Updating channel ’guix’ from Git repository...
Authenticating channel ’guix’, 329 new commits...

error: commit c4bba93 not signed by an authorized key

$ guix pull --url=https://example.org/mirror.git

--url=https://example.org/evil.git

Updating channel ’guix’ from Git repository...
Authenticating channel ’guix’, 329 new commits...
warning: using a mirror, which might be stale

error: commit c4bba93 not signed by an authorized key

$ guix pull --url=https://example.org/evil.git
Updating channel ’guix’ from Git repository...
Authenticating channel ’guix’, 329 new commits...
error: commit c4bba93 not signed by an authorized key

$ guix git authenticate \
6f0d8cc0d88abb59c324b2990bfee2876016bb86 \
"CABB A931 C0FF EEC6 900D 0CFB 090B 1199 3D9A EBB5"

\
--keyring=my-keyring-branch

$ guix git authenticate \
6f0d8cc0d88abb59c324b2990bfee2876016bb86 \
"CABB A931 C0FF EEC6 900D 0CFB 090B 1199 3D9A EBB5" \
--keyring=my-keyring-branch

What about downgrade attacks?

$ guix describe
guix cabba9e

repository URL: https://git.sv.gnu.org/git/guix.git
commit: cabba9e15900d20927c1f69c6c87d7d2a62040fe

$ guix pull
Updating channel ’guix’ from Git repository...
error: commit c0ff33e is not a descendant of cabba9e

$ guix describe
guix cabba9e

repository URL: https://git.sv.gnu.org/git/guix.git
commit: cabba9e15900d20927c1f69c6c87d7d2a62040fe

$ guix pull
Updating channel ’guix’ from Git repository...
error: commit c0ff33e is not a descendant of cabba9e

$ guix system describe
file name: /var/guix/profiles/system-126-link
label: GNU with Linux-Libre 5.4.15
bootloader: grub-efi
channels:

guix:
repository URL: https://git.savannah.gnu.org/. . .
commit: 93f4511eb0c9b33f5083c2a04f4148e0a494059c

configuration file: /gnu/store/. . .-configuration.scm

$ guix system reconfigure /etc/config.scm
error: commit c4bba93 is not a descendant of 93f451

$ guix system describe
file name: /var/guix/profiles/system-126-link
label: GNU with Linux-Libre 5.4.15
bootloader: grub-efi
channels:

guix:
repository URL: https://git.savannah.gnu.org/. . .
commit: 93f4511eb0c9b33f5083c2a04f4148e0a494059c

configuration file: /gnu/store/. . .-configuration.scm

$ guix system reconfigure /etc/config.scm
error: commit c4bba93 is not a descendant of 93f451

Wrap-up & outlook.

I authenticated Git checkouts
→ safe Guix updates!

I in-band, o�-line: authentication + authorization
data is in Git

I protection against downgrade attacks
I deployed in Guix since mid-2020

You can use it

on your Git repo!

I authenticated Git checkouts
→ safe Guix updates!

I in-band, o�-line: authentication + authorization
data is in Git

I protection against downgrade attacks
I deployed in Guix since mid-2020

Building a Secure Software Supply Chain with GNU Guix

Ludovic Courtèsa
a Inria, France

Abstract The software supply chain is becoming a widespread analogy to designate the series of steps taken
to go from source code published by developers to executables running on the users’ computers. A security
vulnerability in any of these steps puts users at risk, and evidence shows that attacks on the supply chain
are becoming more common. The consequences of an attack on the software supply chain can be tragic in
a society that relies on many interconnected software systems, and this has led research interest as well as
governmental incentives for supply chain security to rise.

GNU Guix is a software deployment tool and software distribution that supports provenance tracking,
reproducible builds, and reproducible software environments. Unlike many software distributions, it consists
exclusively of source code: it provides a set of package definitions that describe how to build code from source.
Together, these properties set it apart from many deployment tools that center on the distribution of binaries.

This paper focuses on one research question: how can Guix and similar systems allow users to securely
update their software? Guix source code is distributed using the Git version control system; updating Guix-
installed software packages means, first, updating the local copy of the Guix source code. Prior work on secure
software updates focuses on systems very different from Guix—systems such as Debian, Fedora, or PyPI where
updating consists in fetching metadata about the latest binary artifacts available—and is largely inapplicable
in the context of Guix. By contrast, the main threats for Guix are attacks on its source code repository, which
could lead users to run inauthentic code or to downgrade their system. Deployment tools that more closely
resemble Guix, from Nix to Portage, either lack secure update mechanisms or suffer from shortcomings.

Our main contribution is a model and tool to authenticate new Git revisions. We further show how,
building on Git semantics, we build protections against downgrade attacks and related threats. We explain
implementation choices. This work has been deployed in production two years ago, giving us insight on its
actual use at scale every day. The Git checkout authentication at its core is applicable beyond the specific use
case of Guix, and we think it could benefit to developer teams that use Git.

As attacks on the software supply chain appear, security research is now looking at every link of the supply
chain. Secure updates are one important aspect of the supply chain, but this paper also looks at the broader
context: how Guix models and implements the supply chain, from upstream source code to binaries running
on computers. While much recent work focuses on attestation—certifying each link of the supply chain—Guix
takes a more radical approach: enabling independent verification of each step, building on reproducible
builds, “bootstrappable” builds, and provenance tracking. The big picture shows how Guix can be used as the
foundation of secure software supply chains.

ACM CCS 2012
Software and its engineering → Software configuration management and version control systems;
Security and privacy → Operating systems security;

Keywords software deployment, security, version control, Git

The Art, Science, and Engineering of Programming

Submitted April 28, 2022

Published June 15, 2022

��� 10.22152/programming-journal.org/2023/7/1
© Ludovic Courtès
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 7, no. �, �0�3, article �; �6 pages.

https://doi.org/10.22152/programming-journal.org/2023/7/1

https://doi.org/10.22152/programming-journal.org/2023/7/1

Unified deployment toolbox vs. patchwork

I end-to-end integration vs. “artifact flow”
I verifiability vs. attestation
I commit graph vs. version strings
I ...

From source code
to deployed binaries:
provenance tracking
& verifiability are the key.

https://guix.gnu.org/ ludo@gnu.org | @civodul@toot.aquilenet.fr

https://guix.gnu.org/

Copyright © 2012–2023 Ludovic Courtès ludo@gnu.org.

GNU Guix logo by Luis Felipe, CC-BY-SA 4.0, https://guix.gnu.org/en/graphics/.
Reproducible Builds logo under CC-BY 3.0, https://uracreative.github.io/reproducible-builds-styleguide/visuals/.
Bootstrappable Builds logo by Ricardo Wurmus, https://bootstrappable.org.

Picture of silver seal by Cicerellus, CC-BY-SA 4.0,
https://commons.wikimedia.org/wiki/File:Sigillo in argento famiglia Ciciarelli de Cicerello.jpg.
Picture of Guix birthday cake by Christopher Baines, CC0, https://10years.guix.gnu.org/photos.
Picture of letter with wax seals by Arno-nl, CC-BY-SA 3.0,
https://commons.wikimedia.org/wiki/File:1951 Switzerland - Luzerner Landbank Grosswangen seals.jpg.
Waving hand by webalys, CC-BY-SA 4.0, https://commons.wikimedia.org/wiki/File:383-waving-hand-1.svg.

Copyright of other images included in this document is held by their respective owners.

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. To view a copy of this license, visit
https://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

At your option, you may instead copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is available at https://www.gnu.org/licenses/gfdl.html.

The source of this document is available from https://git.sv.gnu.org/cgit/guix/maintenance.git.

https://guix.gnu.org/en/graphics/
https://uracreative.github.io/reproducible-builds-styleguide/visuals/
https://bootstrappable.org
https://commons.wikimedia.org/wiki/File:Sigillo_in_argento_famiglia_Ciciarelli_de_Cicerello.jpg
https://10years.guix.gnu.org/photos
https://commons.wikimedia.org/wiki/File:1951_Switzerland_-_Luzerner_Landbank_Grosswangen_seals.jpg
https://commons.wikimedia.org/wiki/File:383-waving-hand-1.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://www.gnu.org/licenses/gfdl.html
https://git.sv.gnu.org/cgit/guix/maintenance.git

