
Building Strong Foundations for a More Secure Future:
Addressing The Systemic Issues in the Software Supply Chain that Led to Log4Shell

Brian Behlendorf, OpenSSF GM
February 2023

Open source is critical to the software supply chain

97%
percent of audited commercial

codebases contain OSS

78%
percent of code in codebases is OSS

85%
percent of codebases contain open source

that is more than four years out of date

Source:
[Synopsys2022] "2022 Open Source Security and Risk Analysis Report” by Synopsys
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2022.pdf
[Sonatype2022] “2022 State of the Software Supply Chain” by Sonatype
https://www.sonatype.com/state-of-the-software-supply-chain/introduction

[Sonatype2022]

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2022.pdf
https://www.sonatype.com/state-of-the-software-supply-chain/introduction

Securing Software:
Make it secure AND secure its supply chain

Source Build Package

Dependencies

Developer Consumer

A B C D F G H

E

Source Integrity Build & Distribution Integrity

A Bypassed code review
B Compromised source control system
C Modified code after source control
D Compromised build platform

E Using a bad dependency
F Bypassed CI/CD
G Compromised package repo
H Using a bad package

Log4Shell Timeline (aka Everyone’s 2021 Winter Holiday)
● Nov 24, 2021: Security researcher Chen Zhaojun discovers the now infamous CVE-2021-44228, or “Log4Shell,”

vulnerability that allows unauthenticated attackers to execute remote code on vulnerable systems, scoring a CVSS
of 10 out of a possible 10.

● Dec 6: Apache Log4j releases version 2.15.0 to remediate the vulnerability. Shortly after, CVE-2021-45046 was
discovered (a flaw that eventually netted a CVSS of 9.0/10) after further research led to the discovery that this
vulnerability allowed for remote code execution by an attacker.

● Dec 10: UK NCSC issues Log4j warning to UK organizations
● Dec 11: CISA director comments on “urgent challenge to network defenders”
● Dec 13: Version 2.16.0 of Apache Log4j is released to remediate. Yet another vulnerability is discovered

CVE-2021-45105, a CVSS 5.9/10 denial of service vulnerability due to infinite recursion in lookup evaluation.
● Dec 19: The Log4j team releases version 2.17.0 to fix the denial of service vulnerability
● Dec 20: Log4j exploited to install Dridex and Meterpreter
● Dec 22: Data shows 10% of all assets vulnerable to Log4Shell
● Dec 28: Yet another patch is released, version 2.17.1, this time to remediate CVE-2021-44832, a CVSS 6.6/10 that

allows code execution by attackers with permissions to modify the logging configuration file.
● Jan 4, 2022: FTC tells companies to patch Log4j vulnerability, threatens legal action
● Jan 10: Microsoft warns of China-based ransomware operator exploiting Log4Shell

Log4Shell Raises Some Serious Questions
● Is open source software’s generally good reputation… actually well

deserved?
● Does this demonstrate deep and pervasive technical issues with

how we all consume and develop open source code?
● Do these issues extend to the sustainability model for open source

code? Can we really depend upon so many “volunteers”?

Now it’s not just devs, CTOs, and CISOs asking these questions — it’s
compliance and risk officers, it’s the cybersecurity insurance industry, it’s
the European Union, the White House’s National Security Council, the
FTC, UK’s NCSC and many other governments and agencies.

Cyber Safety Review Board Report on Log4J Event
● Final Report of the Cyber Safety Review Board

(CSRB) - July 11 2022
● Report concluded that the Log4j vulnerability could

have been prevented if Log4j developers had
access to:
○ Training in secure coding practices consistent

with established secure development lifecycle
tools and techniques

○ Security-oriented design reviews

○ Threat models

○ Security audits

https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf
https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf

Lessons Learned
● CSRB Report concludes a focused review could have identified the unintended

functionality, but such security resources for a review were not available at the
time of adding the JNDI support in 2013

● The Log4j vulnerability could have been prevented if Log4j developers had
access to:
○ Training in secure coding practices consistent with established secure

development lifecycle tools and techniques
○ Security-oriented design reviews
○ Threat models
○ Security audits

Reducing Risk to the Ecosystem
● CSRB also found that the only way to reduce the likelihood of risk to the

ecosystem caused by vulnerabilities in Log4j, and other widely used open
source software is to ensure that code is developed pursuant to
industry-recognized secure coding practices and an attendant audit by security
experts

● The volunteer-based open source community would need sustained financial
support and expertise to make this possible

Log4Shell, one year later (Brian’s Take)
● Log4Shell is not exclusively a supply chain security story or a vulnerability

disclosure story, but rather a hybrid of both. This reflects the ways different
kinds of weaknesses combine to create deep threats.

● But it became a supply chain story because of how difficult it was to detect and
report on the presence of unpatched Log4j in the wild.

● The vulnerability disclosure issue — ensuring that when vulnerabilities are
found, the appropriate patches are distributed in a timely manner to minimize
exploitation — is also critical to address in order to prevent Log4Shell-like
events in the future.

Log4Shell, one year later (Brian’s Take)
● Log4Shell also demonstrates security imbalances in open source by a gap in the

mapping of motivations: developers are often incidentally working on open
source software such as Log4j in the pursuit of fixing bugs or adding features,
which rarely leads them to invest extra time on functions that would reduce the
risk of security issues in their code.

● Just like closed source developers, OSS developers often need to fight with their
managers for the right to work on security improvements, from adding extra
tests and adopting other security best practices, to simply paying down
technical debt and removing underused features. Hard to measure the “ROI” of
security work, so it gets de-prioritized.

Log4Shell, one year later (Brian’s Take)
● $50k-$100k third-party audit likely would have found all four CVEs. Add

$50k-$100k for the fixes and coordinated disclosure process.

● $200k: more than most groups of developers can spend on their own project; but
far, far less than the impact on society from a single Log4Shell.

● Can we find the next likely critical weakness and spend $200k to prevent the next
one? No.

● Can we find, say, 200 projects each with a ~1% chance of being the next one? YES.

● Is it worth $40M to scan and remediate 200 OSS projects per year? YES.

OSS Software Security: A Theory of Change
● How do you bring about culture change in security practices?

○ Answer: Carrots, then Defaults, then Sticks
● For example, encrypting the web with SSL/TLS:

○ Carrots: the green key in browser location bar. Early adopters like banking
websites, e-commerce requirements.

○ Defaults: Let’s Encrypt
○ Sticks: non-TLS websites generated warnings, then blocks

● OSS Do-ocracy: everything is done by those who show up. Mandates, even by
Foundations themselves, can often backfire.

● The EU Cyber Resilience Act is the backlash to "Move Fast and Break Things"
○ But OSS developers are not Mark Zuckerberg!
○ We need Carrots and Defaults, long before we need the Sticks

The OpenSSF Has Entered The Chat
Established by the Linux Foundation in 2020, the OpenSSF is
a global initiative securing investment, resources, and
expertise to measure and improve the security of open
source software (OSS) and the software supply chain.

It brings together cybersecurity and open source software
leaders building an array of different technology initiatives:

● Open Source Security Software
● Open Specifications
● Open Education Resources

…and other products and activities that build cybersecurity
capacity and reduce global cybersecurity risk.

OpenSSF Working Groups & Projects

Vulnerability Disclosures
Efficient vulnerability reporting
and remediation

Best Practices
Identification, awareness, and education
of security best practices

Identifying Security Threats
Security metrics/reviews for open source projects

Securing Critical Projects
Identification of critical open source projects

Security Tooling
State of the art, globally accessible
security tools

Supply Chain Integrity
Ensuring the provenance of open source code

Securing Software Repositories
collaboration of repositories & tools to
improve security

Associated Projects

● OpenSSF Best Practices badge
● Scorecards
● Great MFA distribution SIG
● Common Requirements Enumeration (CRE)*
● Secure Software Development Fundamentals

courses SIG
● Security Knowledge Framework (SKF)*

● Guide to coordinated vulnerability disclosure for
OSS projects

● Vulnerability Disclosures Whitepaper
● osv-schema

● security-reviews,
● Project-Security-Metrics (dashboard)
● SECURITY-IMPACTS.yml spec

● ossf-cve-benchmark
● Web Application Definition spec
● fuzz-introspector

● Supply-chain Levels for Software Artifacts
(SLSA) [repo]

● criticality_score
● Harvard research
● package-feeds / package-analysis
● allstar

● Project Alpha-Omega
● Project Sigstore
● GNU Toolchain Infrastructure (GTI) support● Coming soon!

End Users WG
voice of public & private sector orgs that primarily
consume open source

https://github.com/ossf/wg-vulnerability-disclosures
https://github.com/ossf/wg-best-practices-os-developers
https://github.com/ossf/wg-identifying-security-threats
https://github.com/ossf/wg-securing-critical-projects
https://github.com/ossf/wg-security-tooling
https://github.com/ossf/wg-supply-chain-integrity
https://github.com/ossf/wg-securing-software-repos
https://bestpractices.coreinfrastructure.org
https://github.com/ossf/scorecard
https://github.com/ossf/great-mfa-project
https://github.com/OWASP/common-requirement-enumeration
https://openssf.org/training/courses/
https://owasp.org/www-project-security-knowledge-framework/
https://github.com/ossf/oss-vulnerability-guide
https://github.com/ossf/oss-vulnerability-guide
https://docs.google.com/document/d/1ggvl7_p7-tmieP5He1dSmRbndDz1CG2_BqNpk6ss6ks/edit
https://github.com/ossf/osv-schema
https://github.com/ossf/security-reviews
https://github.com/ossf/Project-Security-Metrics
https://metrics.openssf.org/
https://docs.google.com/document/d/1Hqks2J0wVqS_YFUQeIyjkLneLfo3_9A-pbU-7DZpGwM/edit
https://github.com/ossf-cve-benchmark/ossf-cve-benchmark
https://github.com/ossf/wg-security-tooling/wiki/WebAppDefn
https://github.com/ossf/fuzz-introspector/
https://slsa.dev/
https://github.com/slsa-framework/slsa/
https://github.com/ossf/criticality_score
https://www.coreinfrastructure.org/programs/census-program-ii/
https://github.com/ossf/package-feeds
https://github.com/ossf/package-analysis
https://github.com/ossf/allstar
https://docs.google.com/document/d/1LmFqvSDvw1bCXhDh-30cipJule5LJMMceaKW_9hcgUA/edit
https://www.sigstore.dev/
https://github.com/ossf/wg-endusers

Are You an OSS Maintainer? Use These!

Concise Guide for Evaluating Open Source Software
1. Can you avoid adding it?
2. Are you evaluating the intended version?
3. Is it maintained?
4. Is there evidence that its developers work to make it secure? [“Developing”]
5. Is it easy to use securely?
6. Are there instructions on how to report vulnerabilities?
7. Does it have significant use?
8. What is the software’s license?
9. What is your evaluation of its code?

https://github.com/ossf/wg-best-practices-os-developers/blob/main/docs/Concise-Gui
de-for-Evaluating-Open-Source-Software.md#readme

… includes how to get
information to estimate
the answers

https://github.com/ossf/wg-best-practices-os-developers/blob/main/docs/Concise-Guide-for-Evaluating-Open-Source-Software.md#readme
https://github.com/ossf/wg-best-practices-os-developers/blob/main/docs/Concise-Guide-for-Evaluating-Open-Source-Software.md#readme

Concise Guide for Developing More Secure Software
1. Ensure all privileged developers use multi-factor authentication (MFA) tokens.
2. Learn about secure software development.
3. Use a combination of tools in your CI pipeline to detect vulnerabilities.
4. Evaluate software before selecting it as a direct dependency. [“Evaluating”]
5. Use package managers.
6. Implement automated tests [high coverage, negative testing].
7. Monitor known vulnerabilities in your software’s direct &

indirect dependencies.
8. Keep dependencies reasonably up-to-date.
9. … (more, e.g., OpenSSF Best Practices Badge & OpenSSF Scorecards)

https://github.com/ossf/wg-best-practices-os-developers/blob/main/docs/Concise-Guide-for
-Developing-More-Secure-Software.md#readme

Rapid
updates

https://github.com/ossf/wg-best-practices-os-developers/blob/main/docs/Concise-Guide-for-Developing-More-Secure-Software.md#readme
https://github.com/ossf/wg-best-practices-os-developers/blob/main/docs/Concise-Guide-for-Developing-More-Secure-Software.md#readme

Course: Secure Software Development Fundamentals
● Free course, 14-18 hours, with 3 parts:

○ Requirements, Design, and Reuse
○ Implementation
○ Verification and More Specialized Topics

● Courses teach fundamentals of
developing secure software (OSS or not)

● Free certificate via LF Training (evidence
you learned the material)

● https://openssf.org/training/courses/

https://openssf.org/training/courses/

OpenSSF Best Practices Badge
● Identifies best practices for OSS projects

○ Goal: Increase likelihood of better quality & security. E.g.:
■ “The project sites… MUST support HTTPS using TLS.”
■ “The project MUST use at least one automated test suite...”
■ “At least one static code analysis tool MUST be applied…”
■ “The project MUST publish the process for reporting vulnerabilities on the project site.”

○ Based on practices of well-run OSS projects
● If OSS project meets best practice criteria, it earns a badge

○ Enables projects & potential users know current status & where it can improve
○ Combination of self-certification, automated checks, spot checks, public accountability
○ Three badge levels: passing, silver, gold

● Participation widespread & continuing to grow
○ >5,000 participating projects, >850 passing+ projects in 2022-10
○ Current statistics: https://bestpractices.coreinfrastructure.org/en/project_stats

● A project within the OpenSSF Best Practices Working Group (WG)
● For more, see: https://bestpractices.coreinfrastructure.org

https://bestpractices.coreinfrastructure.org/en/project_stats
https://bestpractices.coreinfrastructure.org

OpenSSF Scorecards
● Automatically scores OSS projects on heuristics ("checks")

○ Each related to security, scored 0-10, weighted average computed
○ Can use to evaluate your own or others’ projects (they don’t need to cooperate)
○ Currently only works on projects hosted on GitHub (not fundamental)

● Sample checks:
○ Binary-Artifacts - Is the project free of checked-in binaries?
○ Branch-Protection - Does it use Branch Protection ?*
○ CI-Tests - Does it run tests in CI, e.g. GitHub Actions, Prow?
○ CII-Best-Practices - Does it have an OpenSSF (formerly CII) Best Practices Badge?
○ Code-Review - Does it require code review before code is merged?
○ Contributors - Does it have contributors from at least two different organizations?

● https://github.com/ossf/scorecard

https://github.com/ossf/scorecard

OpenSSF Scorecard Checks Actually Work.

Source: Sonatype
https://www.sonatype.com/state-of-the-software-supply-
chain/project-quality-metrics

https://www.sonatype.com/state-of-the-software-supply-chain/project-quality-metrics
https://www.sonatype.com/state-of-the-software-supply-chain/project-quality-metrics

Scorecards in Usage
● CNCF’s CLO Monitor uses the

Scorecard API for its measurements
○ https://clomonitor.io/

● CNCF SecuritySlam
○ CNCF project maintainers worked over a

month to raise their projects' security score
(measured by OpenSSF Security Scorecard)
ahead of KubeCon + CloudNativeCon NA to
increase security awareness, posture &
compliance

○ https://community.cncf.io/cloud-native-se
curity-slam/

https://clomonitor.io/
https://community.cncf.io/cloud-native-security-slam/
https://community.cncf.io/cloud-native-security-slam/

Sigstore: Software Signing Service
● Tools currently exist to cryptographically sign OSS packages

○ No widely-practical mechanism to determine if public keys used are correct
○ No easy way to detect malicious signing
○ Key revocation typically impractical in practice

● Sigstore is a free-to-use non-profit software signing service
○ Users generate ephemeral short-lived key pairs using the sigstore client tooling
○ sigstore PKI service provides a signing certificate generated upon a successful OpenID connect grant
○ All certificates are recorded in certificate transparency log
○ Software signing materials are sent to a signature transparency log
○ Guarantees that claimed user controlled their identity service providers’ account at time of signing
○ Once the signing operation is complete, the keys can be discarded, removing any need for further key

management or need to revoke or rotate.
● Using OpenID connect identities enables use of existing security controls such as 2FA,

OTP and hardware token generators
● Transparency logs are public and open; anyone can monitor transparency logs for issues

sigstore

Source: https://sigstore.dev/what_is_sigstore/

Other OpenSSF Initiatives

Supply chain Levels for
Software Artifacts (SLSA) -
https://slsa.dev/

Guide to coordinated
vulnerability disclosure for
open source software projects
https://github.com/ossf/oss-
vulnerability-guide#readme

https://slsa.dev/
https://github.com/ossf/oss-vulnerability-guide#readme
https://github.com/ossf/oss-vulnerability-guide#readme

Measuring Risk: OSS Dashboard
● Provide metrics to help make decisions about adding/using some OSS
● Build on existing work

○ E.g., OpenSSF Scorecards, OpenSSF Best Practices Badge, LFX, CHAOSS, etc.
● Maps interestingly to recommendations from the CSRB report as well as from the

Securing Open Source Software Act released in September 2022.
● Work in progress as part of Identifying Security Threats Working Group
● Eventually, this should be how companies measure their own risk in use of OSS
● Eventually, this is how developers should figure out which dependencies to use or

eliminate, and what steps to take to improve their own score.

Addressing OSS Security At Scale: The Alpha-Omega Project
Alpha:

● Systematically build the maturity and “capacity” inside major
open source software projects and foundations to prepare
for and respond to security issues.

● Yearly ~$500k grants with broad objectives:
○ Python Software Foundation
○ Rust Foundation
○ Eclipse Foundation
○ JQuery
○ NodeJS

Omega:
● Systematically scan the top 10K OSS projects for new

vulnerabilities, and then work with maintainers to get them
addressed.

● 11 Vulnerabilities identified in 2022, setting up for hundreds
to thousands in 2023.

https://openssf.org/wp-content/uploads/sites/132/2022/12/OpenSSF-Alpha-Omega-Annual-Report-2022.pdf

Investing Back Into OSS Security

In Response to Log4Shell, the OpenSSF Developed a Plan
The OpenSSF community developed a series of 3 to 5 page proposals answering the
following questions:

● What are the major problems to address that would lead to better open source
software supply chain security?

● What pre-existing efforts, whether inside OpenSSF today or not, are already
starting to address those problems?

● Building on those pre-existing efforts, what financial and other resources would
it take to fully or mostly tackle each problem?

● What are some pragmatic but ambitious targets we can set for solutions to
each problem, with measurable results within the first two years?

The Result: The Open Source Software Security Mobilization Plan

● First-of-its-kind plan to broadly address
open source and software supply chain
security

● Developed collaboratively by the OpenSSF
Governing Board and OpenSSF’s expert
community

● Details $150M of funding over two years to
rapidly advance well-vetted solutions to ten
major problems the plan identifies

$150M
may sound like a lot of money

$150M
$700M

is the fine the FTC levied on Equifax
for the 2017 data breach caused in part by

unpatched OSS (Apache Struts)

Secure OSS
Production

Improve
Vulnerability
Discovery &
Remediation

Shorten
Ecosystem

Patching
Response Time

Goals Identified:

Multi-year investment into key OSS initiatives will modernize
the security and integrity of the software supply chain.

1.

Launched at the Open Source Software Security Summit II
● Washington, DC on May 12-13, 2022
● The Linux Foundation and OpenSSF gathered a

cross-section of open source developer &
commercial ecosystem representatives along
with leaders & experts from key U.S. federal
agencies

● We reviewed the plan together, both at a high
level and into specifics, to ensure they were the
right targets, and that they built on the work
the US Government had already begun.

● Through the event we received $30M in
pledges from OpenSSF members towards the
plan.

Open Source Software Security Summit Japan
● Tokyo, Japan on August 3, 2022

● The Linux Foundation and OpenSSF gathered a
cross-section of senior cybersecurity
representatives from leading Japanese firms,
OpenSSF members, and representatives from the
Japanese government.

● We convened to discuss open source software (OSS)
security challenges, modern challenges to the global
software supply chain, and how to accelerate
improvements. We discussed how each stream of
the Mobilization Plan could align with national
policies and priorities for Japan, and how Japanese
industry could participate in the further definition
and implementation of the plan.

Future: where do we go from here?
● We plan to continue to work towards funding and establishing the

workstreams in the Mobilization Plan

● The Plan is necessary but not sufficient; other actors have roles to
play beyond the OpenSSF, and open source needs sustainable
long-term funding where the users of OSS give back to the
software repositories that they use.

● Other actors have roles to play, including government; for example,
we saw the introduction of the Securing Open Source Software Act
in the United States Congress in September 2022

○ We plan to continue to engage and work together with policymaker efforts to do
what is most beneficial for the open source community.

https://openssf.org/blog/2022/09/27/the-united-states-securing-open-source-software-act-what-you-need-to-know/

In Summary:
● Attacks on the integrity of open source software — and as a result, on the full

software supply chain — are increasingly disruptive and require coordinated
industry efforts to address. We have learned more about the nature of these
problems since Log4Shell.

● Key steps in improving security of the OSS ecosystem:
a. Education (Concise Guides, Courses)
b. Measurement (Scorecards, Best Practices Badge, Criticality Scores)
c. Tooling (Sigstore, SLSA) and Defaults (working with IDEs and distributors)
d. Investment (Where are the weakest links? How can we address upstream?)

● The OpenSSF is here to help.

Thank you!

