Building Strong Foundations for a More Secure Future:
Addressing The Systemic Issues in the Software Supply Chain that Led to Log4Shell

Brian Behlendorf, OpenSSF GM
February 2023

Open source Is critical to the software supply chain

97%

percent of audited commercial
codebases contain 0SS

718%

percent of code in codebases is 0SS

89%

percent of codebases contain open source
that is more than four years out of date

Source:

[Synopsys2022] "2022 Open Source Security and Risk Analysis Report” by Synopsys
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2022.pdf
[Sonatype2022] “2022 State of the Software Supply Chain” by Sonatype
https://www.sonatype.com/state-of-the-software-supply-chain/introduction

There has been an
astonishing

742%

average annual

increase in
Software Supply
Chain attacks over
the past 3 years.

Key Finding

About

6 out of every 7
project vulnerabilities

come from transitive

dependencies.

+.0g

Key Finding

[Sonatype2022]

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2022.pdf
https://www.sonatype.com/state-of-the-software-supply-chain/introduction

Securing Software:
Make it secure AND secure its supply chain

Source Integrity Build & Distribution Integrity
O - T -
Developer Consumer

r—— —— —

| Dependencies

A Bypassed code review E Using a bad dependency

B Compromised source control system F Bypassed CI/CD

C Modified code after source control G Compromised package repo
D Compromised build platform H Using a bad package

Log4Shell Timeline (oka Everyone's 2021 Winter Holiday)

Nov 24, 2021: Security researcher Chen Zhaojun discovers the now infamous CVE-2021-44228, or “Log4Shell,
vulnerability that allows unauthenticated attackers to execute remote code on vulnerable systems, scoring a CVSS
of 10 out of a possible 10.

Dec 6: Apache Logsj releases version 2.15.0 to remediate the vulnerability. Shortly after, CVE-2021-45046 was
discovered (a flaw that eventually netted a CVSS of 9.0/10) after further research led to the discovery that this
vulnerability allowed for remote code execution by an attacker.

Dec 10: UK NCSCissues Log4j warning to UK organizations

Dec 11: CISA director comments on “urgent challenge to network defenders”

Dec 13: Version 2.16.0 of Apache Log4j is released to remediate. Yet another vulnerability is discovered
CVE-2021-45105, a CVSS 5.9/10 denial of service vulnerability due to infinite recursion in lookup evaluation.

Dec 19: The Log4j team releases version 2.17.0 to fix the denial of service vulnerability

Dec 20: Log4j exploited to install Dridex and Meterpreter

Dec 22: Data shows 10% of all assets vulnerable to Log4Shell

Dec 28: Yet another patch is released, version 2.17.1, this time to remediate CVE-2021-44832, a CVSS 6.6/10 that
allows code execution by attackers with permissions to modify the logging configuration file.
Jan 4, 2022: FTC tells companies to patch Logs4j vulnerability, threatens legal action

Jan 10: Microsoft warns of China-based ransomware operator exploiting Log4Shell

@upenSSF

OPEN SOURCE SECURITY FOUNDATION

Log4Shell Raises Some Serious Questions

e Is open source software’s generally good reputation... actually well
deserved?

e Does this demonstrate deep and pervasive technical issues with
how we all consume and develop open source code?

e Do theseissues extend to the sustainability model for open source
code? Can we really depend upon so many “volunteers”?

Now it's not just devs, CTOs, and CISOs asking these questions — it's
compliance and risk officers, it's the cybersecurity insurance industry, it's
the European Union, the White House's National Security Council, the
FTC, UK's NCSC and many other governments and agencies.

UUUUUUUUUUUUUUUUUUUUUUUUUUUUU

Cyber Safety Review Board Report on Log4Jd Event

Review of the December
2021 Log4j Event

Publication: July 11,2022
Cyber Safety Review Board

CYBER SAFETY REVIEW BOARD

Final Report of the Cyber Safety Review Board

(CSRB) - July 11 2022

Report concluded that the Log4j vulnerability could
have been prevented if Log4j developers had
access to:

o Training in secure coding practices consistent
with established secure development lifecycle
tools and techniques

o Security-oriented design reviews
o Threat models

o Security audits

https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf
https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf

Lessons Learned

e (SRB Report concludes a focused review could have identified the unintended
functionality, but such security resources for a review were not available at the
time of adding the JNDI support in 2013

e The Log4j vulnerability could have been prevented if Log4j developers had
access to:

o Training in secure coding practices consistent with established secure
development lifecycle tools and techniques

o Security-oriented design reviews

o Threat models

o Security audits

Reducing Risk to the Ecosystem

e (SRB also found that the only way to reduce the likelihood of risk to the
ecosystem caused by vulnerabilities in Log4j, and other widely used open
source software is to ensure that code is developed pursuant to
industry-recognized secure coding practices and an attendant audit by security
experts

e The volunteer-based open source community would need sustained financial
support and expertise to make this possible

UUUUUUUUUUUUUUUUUUUUUUUUUUUUU

Log4Shell, one year loter (Brian's Take)

e Log4Shellis not exclusively a supply chain security story or a vulnerability
disclosure story, but rather a hybrid of both. This reflects the ways different
kinds of weaknesses combine to create deep threats.

e Butit became a supply chain story because of how difficult it was to detect and
report on the presence of unpatched Log4j in the wild.

e The vulnerability disclosure issue — ensuring that when vulnerabilities are
found, the appropriate patches are distributed in a timely manner to minimize
exploitation — is also critical to address in order to prevent Log4Shell-like
events in the future.

@upenSSF

UUUUUUUUUUUUUUUUUUUUUUUUUUUU

Log4Shell, one year loter (Brian's Take)

Log4Shell also demonstrates security imbalances in open source by a gap in the
mapping of motivations: developers are often incidentally working on open
source software such as Log4j in the pursuit of fixing bugs or adding features,
which rarely leads them to invest extra time on functions that would reduce the
risk of security issues in their code.

Just like closed source developers, 0SS developers often need to fight with their
managers for the right to work on security improvements, from adding extra
tests and adopting other security best practices, to simply paying down
technical debt and removing underused features. Hard to measure the "ROI” of
security work, so it gets de-prioritized.

égupenSSF

UUUUUUUUUUUUUUUUUUUUUUUUUUUU

Log4Shell, one year loter (Brian's Take)

e S50k-$100k third-party audit likely would have found all four CVEs. Add
S50k-5100k for the fixes and coordinated disclosure process.

e 5200k: more than most groups of developers can spend on their own project; but
far, far less than the impact on society from a single Log4Shell.

e (an we find the next likely critical weakness and spend $S200k to prevent the next
one? No.

e (an we find, say, 200 projects each with a ~1% chance of being the next one? YES.

e |Isit worth S40M to scan and remediate 200 OSS projects per year? YES.

@upenSSF

UUUUUUUUUUUUUUUUUUUUUUUUUUUU

0SS Software Security: A Theory of Change

How do you bring about culture change in security practices?
o Answer: Carrots, then Defaults, then Sticks
For example, encrypting the web with SSL/TLS:
o (Carrots: the green key in browser location bar. Early adopters like banking
websites, e-commerce requirements.
o Defaults: Let's Encrypt
o Sticks: non-TLS websites generated warnings, then blocks
0SS Do-ocracy: everything is done by those who show up. Mandates, even by
Foundations themselves, can often backfire.
The EU Cyber Resilience Act is the backlash to "Move Fast and Break Things"
o But 0SS developers are not Mark Zuckerberg!
o We need Carrots and Defaults, long before we need the Sticks

The OpenSSF Has Entered The Chat

Established by the Linux Foundation in 2020, the OpenSSF is
a global initiative securing investment, resources, and
expertise to measure and improve the security of open
source software (0SS) and the software supply chain.

It brings together cybersecurity and open source software
leaders building an array of different technology initiatives:

e Open Source Security Software
e Open Specifications
e Open Education Resources

...and other products and activities that build cybersecurity
capacity and reduce global cybersecurity risk.

\\

DpenS

SF

OpenSSF Working Groups & Projects

Best Practices Supply Chain Integrity

Identification, awareness, and education

i . Ensuring the provenance of open source code
of security best practices

* OnenSof Bost Pract s sarlge .) e Supply-chain Levels for Software Artifacts
e Scorecards e security-reviews, (SLSA) [repo]
e Great MFA distribution SIG e Project-Security-Metrics (dashboard)
e Common Reguirements Enumeration (CRE)* e SECURITY-IMPACTS.yml spec
e Secure Software Development Fundamentals
courses SIG
e Security Knowledge Framework (SKF)* Security Tooling Securing Critical Projects

Identification of critical ject:
State of the art, globally accessible entification of critical open source projects

security tools

Vulnerability Disclosures e (riticality score
Efficient vulnerability reporting e ossf-cve-benchmark b %‘fsejrc}‘) -
jati . . e g [} - -
SR e Web Application Definition spec p_g_l:':llcta e-Teeds / package-analysis
e allstar

. . e e fuzz-introspector
e Guide to coordinated vulnerability disclosure for

0SS projects
Vulnerability Disclosures Whitepaper

osv-schema Securing Software Repositories

Associated Projects

collaboration of repositories & tools to

End Users WG improve security e Project Alpha-Omega
g g : — e Project Sigstore
Voice of public & private sector orgs that primarily e Coming soon! e GNU Toolchain Infrastructure (GTI) support

consume open source

https://github.com/ossf/wg-vulnerability-disclosures
https://github.com/ossf/wg-best-practices-os-developers
https://github.com/ossf/wg-identifying-security-threats
https://github.com/ossf/wg-securing-critical-projects
https://github.com/ossf/wg-security-tooling
https://github.com/ossf/wg-supply-chain-integrity
https://github.com/ossf/wg-securing-software-repos
https://bestpractices.coreinfrastructure.org
https://github.com/ossf/scorecard
https://github.com/ossf/great-mfa-project
https://github.com/OWASP/common-requirement-enumeration
https://openssf.org/training/courses/
https://owasp.org/www-project-security-knowledge-framework/
https://github.com/ossf/oss-vulnerability-guide
https://github.com/ossf/oss-vulnerability-guide
https://docs.google.com/document/d/1ggvl7_p7-tmieP5He1dSmRbndDz1CG2_BqNpk6ss6ks/edit
https://github.com/ossf/osv-schema
https://github.com/ossf/security-reviews
https://github.com/ossf/Project-Security-Metrics
https://metrics.openssf.org/
https://docs.google.com/document/d/1Hqks2J0wVqS_YFUQeIyjkLneLfo3_9A-pbU-7DZpGwM/edit
https://github.com/ossf-cve-benchmark/ossf-cve-benchmark
https://github.com/ossf/wg-security-tooling/wiki/WebAppDefn
https://github.com/ossf/fuzz-introspector/
https://slsa.dev/
https://github.com/slsa-framework/slsa/
https://github.com/ossf/criticality_score
https://www.coreinfrastructure.org/programs/census-program-ii/
https://github.com/ossf/package-feeds
https://github.com/ossf/package-analysis
https://github.com/ossf/allstar
https://docs.google.com/document/d/1LmFqvSDvw1bCXhDh-30cipJule5LJMMceaKW_9hcgUA/edit
https://www.sigstore.dev/
https://github.com/ossf/wg-endusers

@ OpenSSF

OOOOOOOOOOOOOOOOOOOOOOOOOOOO

Are You an 055 Maintainer? Use These!

Concise Guide for Evaluating Open Source Software

O 0N U EWN-=

Can you avoid adding it?
Are you evaluating the intended version?
ls it maintained?
Is there evidence that its developers work to make it secure? [“Developing”]
s it easy to use securely?
Are there instructions on how to report vulnerabilities?
Does it have significant use? ,
... includes how to get
What is the software’s license? information to estimate
What is your evaluation of its code? ine Enslies

https://github.com/ossf/wg-best-practices-os-developers/blob/main/docs/Concise-Gui

de-for-Evaluating-Open-Source-Software.md#readme

https://github.com/ossf/wg-best-practices-os-developers/blob/main/docs/Concise-Guide-for-Evaluating-Open-Source-Software.md#readme
https://github.com/ossf/wg-best-practices-os-developers/blob/main/docs/Concise-Guide-for-Evaluating-Open-Source-Software.md#readme

Concise Guide for Developing More Secure Software

Ensure all privileged developers use multi-factor authentication (MFA) tokens.

N O U R WN =

o

9.

Learn about secure software development.
Use a combination of tools in your Cl pipeline to detect vulnerabilities.

Evaluate software before selecting it as a direct dependency. ["Evaluating”]

Use package managers.

Implement automated tests [high coverage, negative testing].
Monitor known vulnerabilities in your software’s direct &
indirect dependencies.

Keep dependencies reasonably up-to-date. _J
... (more, e.g., OpenSSF Best Practices Badge & OpenSSF Scorecards)

https://github.com/ossf/wg-best-practices-os-developers/blob/main/docs/Concise-Guide-for

-Developing-More-Secure-Software.md#ireadme

Rapid
updates

https://github.com/ossf/wg-best-practices-os-developers/blob/main/docs/Concise-Guide-for-Developing-More-Secure-Software.md#readme
https://github.com/ossf/wg-best-practices-os-developers/blob/main/docs/Concise-Guide-for-Developing-More-Secure-Software.md#readme

Course: Secure Software Development Fundamentals

CITHELINUX FOUNDATION

e Free course, 14-18 hours, with 3 parts:

o Requirements, Design, and Reuse
o Implementation
o \Verification and More Specialized Topics

e (ourses teach fundamentals of
developing secure software (0SS or not)

e Free certificate via LF Training (evidence
you learned the material)

e https://openssf.org/training/courses/

Training &
L. Certification

Developing Secure Software (LFD121)

e security basics to develop software that is hardened against attacks, and understand
duce the damage and speed the re: e when a vulnerability is exploited. Than

Course Rating

gin Using My Portal Before Enrolling
. Includes n

Online, Self Paced

https://openssf.org/training/courses/

OpenSSF Best Practices Badge

e Identifies best practices for OSS projects
o Goal: Increase likelihood of better quality & security. E.g.:
m "The project sites... MUST support HTTPS using TLS."
m "The project MUST use at least one automated test suite...”
m “Atleast one static code analysis tool MUST be applied...”
m "The project MUST publish the process for reporting vulnerabilities on the project site.”
o Based on practices of well-run OSS projects

e |f OSS project meets best practice criteria, it earns a badge
o Enables projects & potential users know current status & where it can improve
o Combination of self-certification, automated checks, spot checks, public accountability
o Three badge levels: passing, silver, gold
e Participation widespread & continuing to grow
o >5,000 participating projects, >850 passing+ projects in 2022-10
o Current statistics: https://bestpractices.coreinfrastructure.org/en/project stats
e A project within the OpenSSF Best Practices Working Group (WG)

e For more, see: https://bestpractices.coreinfrastructure.org

https://bestpractices.coreinfrastructure.org/en/project_stats
https://bestpractices.coreinfrastructure.org

OpenSSF Scorecards

e Automatically scores OSS projects on heuristics ("checks")
o Eachrelated to security, scored 0-10, weighted average computed
o (Can use to evaluate your own or others’ projects (they don't need to cooperate)
o Currently only works on projects hosted on GitHub (not fundamental)

e Sample checks:

o Binary-Artifacts - Is the project free of checked-in binaries?
Branch-Protection - Does it use Branch Protection ?*
Cl-Tests - Does it run tests in Cl, e.g. GitHub Actions, Prow?
Cll-Best-Practices - Does it have an OpenSSF (formerly Cll) Best Practices Badge?
Code-Review - Does it require code review before code is merged?

o Contributors - Does it have contributors from at least two different organizations?

e https://github.com/ossf/scorecard

o O O O

https://github.com/ossf/scorecard

OpenSSF Scorecard Checks Actually Work.

Project Quality Metrics

FIGURE 2.2. ELEMENTS MOST USEFUL FOR IDENTIFYING
VULNERABLE PROJECTS

025
0.20
0.15
0.10
) I I I I
o\d XOO\ Qe o\ fa‘\e '1,1/ g o“eb & *"‘gz & 0’@
&\’* 960\6 oef‘c" ?\"’\e Q@?* ?@@ O o o o A 00‘0 i \g??} 0"'@ Source: Sonat\/pe
O & o@ @
o ¥ & o O S https://www.sonatype.com/state-of-the-software-supply- u EHSSF
e chain/project-quality-metrics p

Z
“ OPEN SOURCE SECURITY FOUNDATION

https://www.sonatype.com/state-of-the-software-supply-chain/project-quality-metrics
https://www.sonatype.com/state-of-the-software-supply-chain/project-quality-metrics

Scorecards in Usage

e (CNCF's CLO Monitor uses the
Scorecard API for its measurements

(@)

https://clomonitor.io/

e (CNCF SecuritySlam

(@)

CNCF project maintainers worked over a
month to raise their projects' security score
(measured by OpenSSF Security Scorecard)
ahead of KubeCon + CloudNativeCon NA to
increase security awareness, posture &
compliance
https://community.cncf.io/cloud-native-se

curity-slam/

B CLOMONITOR e

1-20 of 183 results

FILTERS

FOUNDATION
CNCF

LF Al & Data

MATURITY LEVEL
Graduated
Incubating

Sandbox

RATING
@ A [75-100]

© B [50-74]

DOCS STATS -]

Sort: Alphabetically (A-Z) v Show: 20 v

1chipML . Adiik

64 44 65
LF Al & DATA EFFEELTEEI =1 LF Al & DATA EEFRLETEENDE]
1chipML is a library for numerical crunching Toolkit for Accelerating Deep Learning
and machine learning on microcontrollers Inference
© D entat 73 © Documentation 77
£ License 75 £ License 75
© Best Practices 60 © Best Practices 65
& Security 60 & Security 55
& Legal 0 ¥ Legal 0
@ Adversarial Robustn... Aeraki Mesh
71
\@ 4 Graduated e #i Sandbox 59

@upenSSF

OPEN SOURCE SECURITY FOUNDATION

https://clomonitor.io/
https://community.cncf.io/cloud-native-security-slam/
https://community.cncf.io/cloud-native-security-slam/

Sigstore: Software Signing Service . f sigstore

e Tools currently exist to cryptographically sign OSS packages
o No widely-practical mechanism to determine if public keys used are correct
o No easy way to detect malicious signing
o Key revocation typically impractical in practice

e Sigstoreis a free-to-use non-profit software signing service

Users generate ephemeral short-lived key pairs using the sigstore client tooling

sigstore PKI service provides a signing certificate generated upon a successful OpenID connect grant
All certificates are recorded in certificate transparency log

Software signing materials are sent to a signature transparency log

Guarantees that claimed user controlled their identity service providers’ account at time of signing
Once the signing operation is complete, the keys can be discarded, removing any need for further key
management or need to revoke or rotate.

e Using OpenlD connect identities enables use of existing security controls such as 2FA,
OTP and hardware token generators
e Transparency logs are public and open; anyone can monitor transparency logs for issues

0O O O 0O O O

Source: https://sigstore.dev/what_is_sigstore/

0 sigstore

sigstore.dev

Overview

How sigstore works

sigstore is a set of tools developers, software maintainers, package
managers and security experts can benefit from. Bringing together
free-to-use open source technologies like Fulcio, Cosign and Rekor, it
handles digital signing, verification and checks for provenance needed
to make it safer to distribute and use open source software.

A standardized approach

This means that open source software uploaded for distribution has a
stricter, more standardized way of checking who'’s been involved, that
it hasn't been tampered with. There’s no risk of key compromise, so
third parties can't hijack a release and slip in something malicious.

Building for future integrations

With the help of a working partnership that includes Google, the Linux
Foundation, Red Hat and Purdue University, we're in constant
collaboration to find new ways to improve the sigstore technology, to
make it easy to adopt, integrate and become a long-lasting standard.

Community

How sigstore works

Trust and security

Blog

Docs &

A4

DEVELOPERS, MAINTAINERS, MONITORS

SIGN AND
PUBLISH
ARTIFACTS

PUBLISH
SIGNING
CERTIFICATES

4)

FULCIO SIGNATURE KEY
CERTIFICATE TRANSPARENCY TRANSPARENCY

AUTHORITY LOG LOG

. J

@)

TRUST ROOT
\ J

Other OpenSSF Initiatives

>

Supply chain Levels for
Software Artifacts (SLSA) -
https://slsa.dev/

Guide to coordinated
vulnerability disclosure for

% open source software projects
https://github.com/ossf/oss-

vulnerability-guide#freadme

https://slsa.dev/
https://github.com/ossf/oss-vulnerability-guide#readme
https://github.com/ossf/oss-vulnerability-guide#readme

Measuring Risk: 0SS Dashboard

e Provide metrics to help make decisions about adding/using some 0SS

e Build on existing work
o E.g., OpenSSF Scorecards, OpenSSF Best Practices Badge, LFX, CHAQOSS, etc.

e Maps interestingly to recommendations from the CSRB report as well as from the
Securing Open Source Software Act released in September 2022.

e \Work in progress as part of Identifying Security Threats Working Group

e FEventually, this should be how companies measure their own risk in use of 0SS

e Eventually, this is how developers should figure out which dependencies to use or
eliminate, and what steps to take to improve their own score.

Addressing 055 Security At Scale: The Alpho-0mega Project

Alpha:

e Systematically build the maturity and “capacity” inside major
open source software projects and foundations to prepare
for and respond to security issues.

e Yearly ~5500k grants with broad objectives:

Python Software Foundation
Rust Foundation

Eclipse Foundation

JQuery

Node]S

O O O O O

Omega:

e Systematically scan the top 10K OSS projects for new
vulnerabilities, and then work with maintainers to get them
addressed.

e 11 Vulnerabilities identified in 2022, setting up for hundreds
to thousands in 2023.

https://openssf.org/wp-content/uploads/sites/132/2022/12/OpenSSF-Alpha-Omega-Annual-Report-2022.pdf

trellix.com, B 120 ¥ © Q search

Stories: Research

Perspectives

Trellix Advanced Research Center Patches 61,000
Vulnerable Open-Source Projects

By Douglas McKee - January 23, 2023

Late last year, the Trellix Advanced Research Center team uncovered a vulnerability in Python's tarfile
module. As we dug in, we realized this was CVE-2007-4559 - a 15-year-old path traversal vulnerability
with potential to allow an attacker to overwrite arbitrary files. CVE-2007-4559 was reported to the
Python project on 2007, and left unchecked, had been unintentionally added to an estimated 350,000
open-source projects and prevalent in closed-source projects.

Today, we're excited to share an update on this work. Through GitHub, our vulnerability research team
has patched 61,895 open-source projects previously susceptible to the vulnerability. This work was led
by Kasimir Schulz and Charles McFarland, and concluded earlier this month.

Phased approach to patching at scale

Open-source developer tools, like Python, are necessary to advance computing and innovation, and
protection from known vulnerabilities requires industry collaboration, especially since many open-
source projects lack dedicated staff and resources. To effectively minimize the vulnerability surface
area, Trellix Advanced Research Center executed a months-long automated effort to patch open-
source projects known to use the vulnerable code.

Through GitHub, developers and community members are able to push code to projects or
repositories on the platform via a process called pull request. Once a request is opened, the project
maintainers review the suggested code, request collaboration or clarification if needed, and accept
the new code. In our case, the code pushed via pull request delivered unique patches to each of the
vulnerable GitHub projects.

RECENT NEWS

Jan 17,2023
Trellix Endpoint Scores 100%
Detection with Zero False
Positives in Latest SE Labs
Endpoint Security Test

Dec 7, 2022

Trellix Predicts Heightened
Hacktivism and Geopolitical
Cyberattacks in 2023

Nov 30, 2022
Trellix Expedites Delivery of XDR
with AWS

Nov 16, 2022
Ransomware Activity Doubles in
Transportation and Shipping
Industry

Sep 28, 2022
Trellix Expands XDR Platform to
Transform Security Operations

RECENT STORIES

Jan 30, 2023

Trellix's Differentiated Position in
+he YR Market - Hishlinkhtad il

@ OpenSSF

OOOOOOOOOOOOOOOOOOOOOOOOOOOO

Investing Back Into 0S5 Security

In Response to Log4Shell, the OpenSSF Developed a Plan

The OpenSSF community developed a series of 3 to 5 page proposals answering the
following questions:

e \What are the major problems to address that would lead to better open source
software supply chain security?

e \What pre-existing efforts, whether inside OpenSSF today or not, are already
starting to address those problems?

e Building on those pre-existing efforts, what financial and other resources would
it take to fully or mostly tackle each problem?

e \What are some pragmatic but ambitious targets we can set for solutions to
each problem, with measurable results within the first two years?

The Result: The Open Source Software Security Mobilization Plan

e First-of-its-kind plan to broadly address
open source and software supply chain Lllinux QOpenSSF
security

e Developed collaboratively by the OpenSSF
Governing Board and OpenSSF's expert

. Software Security
community Mobilization Plan

e Details S150M of funding over two years to
rapidly advance well-vetted solutions to ten
major problems the plan identifies

may sound like a lot of money

@ OpenSSF

OOOOOOOOOOOOOOOOOOOOOOOOOOOO

5700M

IS the fine the FTC levied on Equifax
for the 2017 data breach caused in part by
unpatched 055 (Apache Struts)

Goals Identified:

Improve Shorten
Secure QSS Vulnerabhility Ecosystem
Production Discovery & Patching

Remediation Response Time

Multi-year investment into key 055 initiatives will modernize
the security and integrity of the software supply chain.

STREAM FIRST YEAR SECOND YEAR
1. Baseline Secure Software Development Education $4.5M $3.5M
2. Risk Assessment Dashboard for OSS $3.5M $3.9M
3. Digital Signatures to Deliver Enhanced Trust $13M $4M

4, Replacement of Non-Memory-Safe Languages $5.5M $2M

5. Open Source Security Incident Response Team $2.75M $3M

6. Accelerate Discover and Remediation of New Vulns $15M $11M
7. Third Party Audits/Code Reviews and Remediation $11M $42M
8. Data Sharing to Determine Critical Projects $1.85M $2.05M
9. SBOMs Everywhere: Security Use Cases, Tooling $3.2M TBD
10: Build Systems, Package Managers, and Distribution | $8.1M $8.1M
Systems

Total $68.4M $79.5M

Launched at the Open Source Software Security Summit ||

e Washington, DC on May 12-13, 2022

e The Linux Foundation and OpenSSF gathered a
cross-section of open source developer & :
commercial ecosystem representatives along -
with leaders & experts from key U.S. federal
agencies

e \Wereviewed the plan together, both at a high y
level and into specifics, to ensure they were the 4
right targets, and that they built on the work '
the US Government had already begun. .

e Through the event we received $30M in
pledges from OpenSSF members towards the
plan.

Open Source Software Security Summit Japan

e Tokyo, Japan on August 3, 2022

e The Linux Foundation and OpenSSF gathered a
cross-section of senior cybersecurity
representatives from leading Japanese firms,
OpenSSF members, and representatives from the
Japanese government.

i, i

“\\“\M\\\\\\\\\\\M v R
9 e

e \We convened to discuss open source software (0SS)
security challenges, modern challenges to the global
software supply chain, and how to accelerate
improvements. We discussed how each stream of
the Mobilization Plan could align with national
policies and priorities for Japan, and how Japanese
industry could participate in the further definition
and implementation of the plan.

Future: where do we go from here?

e \We plan to continue to work towards funding and establishing the
workstreams in the Mobilization Plan

e The Plan is necessary but not sufficient; other actors have roles to
play beyond the OpenSSF, and open source needs sustainable
long-term funding where the users of 0SS give back to the
software repositories that they use.

e Other actors have roles to play, including government; for example,
we saw the introduction of the Securing Open Source Software Act
in the United States Congress in September 2022

o We plan to continue to engage and work together with policymaker efforts to do
what is most beneficial for the open source community.

https://openssf.org/blog/2022/09/27/the-united-states-securing-open-source-software-act-what-you-need-to-know/

In Summary:

Attacks on the integrity of open source software — and as a result, on the full
software supply chain — are increasingly disruptive and require coordinated
industry efforts to address. We have learned more about the nature of these
problems since Log4Shell.

Key steps in improving security of the OSS ecosystem:

d.

b.
C.
d

Education (Concise Guides, Courses)

Measurement (Scorecards, Best Practices Badge, Criticality Scores)

Tooling (Sigstore, SLSA) and Defaults (working with IDEs and distributors)
Investment (Where are the weakest links? How can we address upstream?)

The OpenSSF is here to help.

Thank you!

OpenSSF

) OPEN SOURCE SECURITY FOUNDATION

