
A journey through supporting
VMs with dedicated CPUs on
Kubernetes

Itamar Holder
Senior Software Engineer @ Red Hat

Email: iholder.b@outlook.com
Github: https://github.com/iholder101
Youtube: https://www.youtube.com/@itamarholder8000
Linked-in: https://www.linkedin.com/in/itamar-holder-39095b108/

FOSDEM 2023

mailto:iholder.b@outlook.com
https://github.com/iholder101
https://www.youtube.com/@itamarholder8000
https://www.linkedin.com/in/itamar-holder-39095b108/

A journey to …

Introduction to Kubevirt

● Kuberentes + VMs == Kubevirt

● The trick: VM inside a Container

VMs with dedicated CPUs

● Crucial for certain use-cases

○ Realtime VMs

○ VMs that depend on low latency

● Supported by most hypervisors

● We aim to bring this support to Kubernetes

Does this look familiar?

resources:
 requests:

cpu: 100m
ephemeral-storage: 50M
memory: 1024M

 limits:
cpu: 200m
memory: 2048M

Introduction to Cgroups

Containers

Linux Kernel

Cgroups

● Containers - conceptual concept

● 3 main building blocks

SELinux Namespaces

Introduction to Cgroups

● Architecture: tree of resources

● Resources are split between children

● Process attached to cgroup, limited to its resources

● Kubernetes: 1 cgroup per container

100 CPUs

20 CPUs

2 CPUs 10 CPUs 8 CPUs

70 CPUs 10 CPUs

PID 12345
PID 75893

How is CPU allocation implemented in k8s?

Kubernetes Cgroups

Values are Absolute Relative (shares)

Example 100m / 0.1 / 1.3 1024

How k8s converts the absolute values to relative shares?

Kubernetes CPU allocation: requests

1024
shares

200m CPU?

205
shares

● Remember: shares are still relative!

● Side effect: spare resources are available to use

● Request is the minimum amount allocated

Kubernetes QoS (Quality of Service)

QoS CPU Resources Memory Resources

Best Effort nil nil

Burstable Request: 500m
Limit: 1.5

Request: 1024M

Guaranteed Request: 1.5
Limit: 1.5

Request: 2048M
Limit: 2048M

Kubernetes QoS (Quality of Service)

Predictability Stability*

* As long as you keep your promises…

Kubernetes and dedicated CPUs

● CPU-Manager => dedicated CPUs on k8s

● Requirements:

○ Guaranteed QoS

○ CPU request (==limit) as an integer

● 1 container in a Pod => valid

○ Pod has to be Guaranteed!

Introduction to Namespaces

Sharing PID namespace in a Pod

● A pod can share PID namespace between containers

● As a side-effect, file-systems are also shared!

● The trick: /proc/<PID>/root/

kind: Pod
spec:
 shareProcessNamespace: true

A word about (Kernel-based VM)

● Kernel module, Linux => Hypervisor

● Kubevirt + KVM == near-to-native performance

● CPU virtualization

● Backed by QEMU

A word about (Kernel-based VM)

Can I have
4 CPUs? Do you mean

4 threads?

Back to Kubevirt…

virt-launcher Pod

Compute container

1st attempt to support dedicated CPUs

● The idea: compute container with dedicated CPUs

● Possible with CPU manager

● As long as virt-launcher Pod is of Guaranteed QoS

Inside the compute container

● Many threads, very different priorities

● Most important: vCPUs

● Some sibling threads have different priorities

qemu-kvm

CPU 0/KVM

CPU 1/KVM

IO iothread1

IO mon_iothread

vnc_worker

bash

libvirtd

gmain

prio-rpc-libvir

qemu-event

rpc-admin

rpc-libvirtd

vm-default_vmi-

virt-launcher

virt-launcher-m

virtlogd

workerRED: threads under qemu-kvm process
ORANGE: threads under libvirtd process

Problems with the initial approach

2nd attempt: housekeeping approach

● The idea: child cgroup for low-priority threads

○ The housekeeping cgroup

● User: X CPUs => Allocate: X+1 CPUs

○ 1 (dedicated) for housekeeping cgroup

● Move all non-vCPU threads to housekeeping cgroup

● => vCPUs with dedicated CPUs

virt-launcher

Compute
(X+1 dedicated CPUs)

vCPU 1
vCPU 2

…

Housekeeping cgroup
(1 dedicated CPU)

vnc-worker
virtlogd

…

Problems with housekeeping approach

● We waste 1 dedicated core that we don’t actually need

○ Ideally: X + 0.2 CPUs

○ Impossible in Kubernetes…

● Focused around the lowest priority processes

○ Should be reserved

○ Ideally: only configure vCPU threads

● More problems related to cgroups v1/v2

○ Not diving into details here

● Compute container - as usual

○ CPU not dedicated to it

○ Still need Pod Guaranteed QoS

● Instead, new blank container with X dedicated CPUs

○ => new cgroup

● Move only the vCPU threads to this cgroup

3rd attempt: dedicated-cpu cgroup approach

Compute
(Y shared CPUs)

qvm-qemu
virtlogd

Mon-iothread
vCPU 1
vCPU 2

…

Dedicated vcpu cgroup
(X dedicated CPUs)

virt-launcher

Compute
(Y shared CPUs)

qvm-qemu
virtlogd

mon-iothread
…

Dedicated vcpu cgroup
(X dedicated CPUs)

vCPU 1
vCPU 2

…

virt-launcher

3rd attempt: dedicated-cpu cgroup approach

● Moving threads to another container?

○ Share PID namespace!

● Only relevant threads are being configured

● Shared CPUs for the “housekeeping” tasks

● Avoid allocating extra dedicated core

● Keep things open for extensions in the future

Summary & Takeaways

● A lot of introductions :)

● During our journey, we’ve seen:

○ CPU allocation implementation in k8s

○ Cgroups

○ Dedicated CPUs on k8s

○ Namespaces + share within a Pod

○ KVM: vCPUs as threads

○ Kubevirt: VMs on k8s

● Hope these takeaway would serve you in one of your journeys

Thank you!
Please feel free to contact me
for any further questions!
Itamar Holder
Senior Software Engineer @ Red Hat

Email: iholder.b@outlook.com
Github: https://github.com/iholder101
Youtube: https://www.youtube.com/@itamarholder8000
Linked-in: https://www.linkedin.com/in/itamar-holder-39095b108/

FOSDEM 2023

mailto:iholder.b@outlook.com
https://github.com/iholder101
https://www.youtube.com/@itamarholder8000
https://www.linkedin.com/in/itamar-holder-39095b108/

Additional
resources

Root Cgroup
(/sys/fs/cgroup)

cpu controller
(/sys/fs/cgroup/cpu)

cpuset controller
(/sys/fs/cgroup/cpuset) … memory controller

(/sys/fs/cgroup/memory)

Kubepods.slice
(Guaranteed QoS Pods)

Kubepods-pod[uid].slice
(The pod’s cgroup)

crio-[uid].scope crio-[uid].scope
(The container’s cgoup) … crio-[uid].scope

Kubepods-pod[uid].slice Kubepods-pod[uid].slice…

* This cgroup has two more children for best-effort and burstable pods

PID 12345
PID 75893

A more detailed cgroup hierarchy in Kubernetes

A word about cgroup v1 / v2

● Cgroups v2 was introduced in March 14th, 2016.

● Cgroup v2 is designed completely different

● No backward compatibility

● Simply put: More restrictions, less error-prone, less generic.

● Both cgroup v1 and v2 are supported in current Linux kernel

● As of today, most workloads still use v1

● GA-ed on Kubernetes 1.25

Root Cgroup
(/sys/fs/cgroup)

cpuset controller
(/sys/fs/cgroup/cpuset)

Kubepods.slice
(Guaranteed QoS Pods)

virt-launcher

Compute
(X+1 dedicated CPUs)

vCPU 1
vCPU 2

…

Housekeeping cgroup
(1 dedicated CPU)

vnc-worker
virtlogd

…

