

organizers>

Alessandro Cosentino

nate stemen

Purva Thakre

quantum-devroom-manager @fosdem.org

devroom history>

- 2 editions in the past: 2019 and 2020
- Organized by the Quantum Open Source Foundation (QOSF)
- Tomas Babej and Mark Fingerhuth
- 4 years hiatus since then

|outline>

- |quantum computing
- |quantum computing software
- |quantum computing open source software >
- |quantum computing open source software \(\) at FOSDEM

|quantum computing>

A paradigm that harnesses properties of quantum mechanics – such as superposition, entanglement, and interference – to fundamentally improve the speed and/or security of computers

↑ In the NISQ (noisy intermediate-scale quantum) era – up to 1,000 qubits

Applications:

- **Cryptography:** compute the secret key from the public key of the RSA scheme
- **Simulation of quantum systems:** design new materials, more efficient fertilizers, new drugs
- **Optimization:** routing, scheduling, etc...

|quantum computing software >

the job

- Comes up with an algorithm/protocol
- 2. Writes it in a formal language
- 3. Compiles
- 4. Simulates on classical devices
- 5. Runs on real hardware devices

tools for the job

- Hybrid approach (error mitigation, variational quantum algorithms)
- 2. Domain-specific languages
- 3. Compilers
- 4. Simulators
- 5. Control toolkits

|quantum computing open source software>

- R&D phase
- No single "correct" approach yet
- Transparency: benchmark and verify

claims

Truly full-stack

https://arxiv.org/abs/2501.13315v1

to the offerings of proprietary companies in markets where products have already been commer-

|QOSS: landscape >

github.com/qosf/awesome-quantum-software (400+ project)

unitaryfund.github.io/survey-2024/ (800+ participants)

|schedule>

Welcome to the Quantum Computing devroom	Alessandro Cosentino	13:10	13:20
Qlafoutea: Baby steps towards compiling a programming language to analog quantum computer	David "Yoric" Teller	13:25	13:45
No-one used my software: a tale of quantum software engineering	Aleksander Wennersteen	13:50	14:10
Bridging the Gap: Quantum Computing for Classical Software Engineers	Veronica Lopez	14:15	14:35
Quantum type system in H-hat quantum programming language	Eduardo Maschio (Dooms)	14:40	15:00
Quantum Distance Bounding: Unlocking Secure Proximity	Kevin Bogner	15:05	15:25
Introducing Qumat! (An Apache Mahout Joint)	Trevor Grant, Andrew Musselman	15:30	15:50
Opensource Tools for Platform Agnostic Quantum Computing	Harshit Gupta	15:55	16:15
On-Chip Verified Quantum Computation with an Ion-Trap Quantum Processing Unit	Cica Gustiani	16:20	16:40
Unitary Compiler Collection	nate stemen	16:45	17:00

|thanks!>

cosenal.github.io

mas.to/@cosenal

@cosenal.bsky.social