Managing Vulnerabilities In
Open Source Dependencies

Eva Sarafianou

{;3 FOSDEM

2025

Self Intro

e Product Security Engineering Lead @ Mattermost

e Previously, Principal Product Security Engineer at
AuthO & Okta

e Based in Athens, Greece

More info: https://evasar.io

https://evasar.io

Agenda

e \Why 3rd Party Dependencies Vulnerabilities Matter
e Evaluating SCA Tools

e SCA Tool Rollout
e Triaging Findings

*SCA: Software Composition Analysis

Dependency Management Journey

Understand Gather
risk of requirements Rollout tooling Triage
dependencies and evaluate findings
vulnerabilities tools

Why 3rd Party Dependencies Vulnerabilities Matter

e Software composition: In-house code 50% + third-party dependencies 50%
e Increased Attack Surface

e Lack of Control

ENDENCIES
LOG‘IJ@

Dependency Management Goals

Proactivity

No more vulnerable Address vulnerabilities in

dependencies added to the open source dependencies
project/product

Step 1: Evaluating SCA tools

e Define and document your own set of requirements

e For each, define the level of need: [MUST HAVE] [NICE TO HAVE]

e Search for SCA tools to evaluate

e Compare your requirements with their docs

e Pick max 3 tools for further evaluation

Requirement Need
General

Dependency scanning for both direct and transitive Must Have
dependencies

Continuous monitoring of any newly disclosed CVEs
Zero to minimal findings inconsistencies
Suggestions for vulnerability mitigations
Support for incremental scanning
Ability to automatically create SBOMs from projects Nice To Have
Reporting capabilities
Languages / Package Managers

Golang Go Modules

Javascript NPM

Java Maven + Gradle (without pom.xml files)
build.gradle

Kotlin Maven + Gradle (without pom.xml files)

Swift Cocoapods

Policy Management

Ability to create policies based on a number of severity,
exploitability, fixability, dependency reachability, and function
reachability

Ability to break builds/fail PR when certain policies are met
Ability to warn (not break/fail) when a policy is met

Integrations
GitHub Actions (PR comments, checks failing)
Jira
SSO (via SAML or OIDC)
Webhooks
Public API
Support for Reachability
(code calls vulnerability in open source component)
Golang Direct dependencies

Transitive dependencies
At the method/function level

Dependency Management Journey

Understand Understand
risk of requirements Rollout tooling Triage
dependencies and evaluate findings
vulnerabilities tools

4 v/

Step 2: SCA Tool Rollout

Option 1 - Rollout all at once

e Integrate the SCA tool with all the repos
e Start triaging findings

Step 2: SCA Tool Rollout

Option 2 - Phased Rollout

e Make a list of your most important repos (max 5)

e {=0:repo X is integrated in the SCA tool

o {+15d:
o repo Y is integrated in the SCA tool
o Critical/High findings of repo X are mitigated

e {+30d:
o repo Zis integrated in the SCA tool
o Critical/High findings of repo Y are mitigated

Step 2: SCA Tool Rollout

Factors to consider when deciding options

e Are different teams responsible for the repositories to be
added to the SCA tool?

e How many vulnerable dependencies does each repository
have?

e How many repositories will be integrated?

e \What is the teams’ current capacity and workload?

Dependency Management Goals - SCA Rollout

Proactivity

Once you integrate a repo: Risk-based approach:
e Make sure that new PRs e Address Critical/High

introducing dependencies vulnerabilities in the repos

are scanned that get integrated into the
SCA solution.
e Medium/Lows to follow

Step 3: Triaging Findings

Is it a test dependency?

Timeboxed

Investigation Is the vulnerable dependency or the

vulnerable function of the dependency is
reachable?

Balance between the time spent for investigation and the
time spent to update the dependency

Step 3: Triaging Findings

Updating the dependency isn't always an option, if no fix
is available

e Notify the maintainer

e Contribute by addressing the issue in the
repository

e Explore alternative dependencies with similar
functionality

Sustaining Dependency Management Efforts

e Track the resolution of vulnerable dependencies using
existing workflows like GitHub issues or Jira for consistency

e Anticipate future vulnerabilities in existing dependencies

e Establish a regular maintenance schedule to proactively
update dependencies

Dependency Management Journey

Understand Understand
risk of requirements : Triage
dependencies and evaluate selisuiiesiine findings
vulnerabilities tools

v v v vz

https://emojipedia.org/repeat-button

Key Takeaways

e Choose your SCA tool wisely

e Roll out SCA with a clear strategy for addressing findings
and implementing a proactive approach.

e Mitigating vulnerabilities in 3rd party dependencies is an org
wide effort

o Get agreement from Engineering leadership

Thank you!

Eva Sarafianou

{;} FOSDEM

2025

