Livecoding soundscapes
in Kotlin with
Compose Multiplatform

Repurposing a declarative Ul framework for music production

Merlin Pahic¢



Agenda

—

OO NGO AEWDN=

Kotlin and Compose Multiplatform

Functional-declarative paradigm and its role in Livecoding
Introducing DaKapo — why repurpose a Ul framework?
Fundamental building blocks of Ul and music — parallels
State management — how does DaKapo work?
Implementing music building blocks

Expressing rhythms more conveniently

Connecting building blocks

Multiplatform support, optimisations and library integrations
Compose Ul integration and visualisations



Kotlin and Compose Multiplatform

Compose Multiplatform is a declarative Ul framework in the functional paradigm.
There are similarities with React; Compose is a Kotlin framework though.

Kotlin started out as Java with less boilerplate, and has become a flexible
multi-paradigm language with support for platforms beyond the JVM and Android
(Web, Desktop, iOS)



Livecoding and the functional-declarative paradigm

The functional-declarative paradigm is the foundation of some programming
languages, as well as some Ul frameworks (Compose, React).

Various livecoding libraries/frameworks also use this paradigm:

Haskell's Tidal, JavaScript’s Strudel, Clojure’s Overtone

But none of these leverage a Ul framework like Compose or React.



Introducing DaKapo

Leveraging Compose Multiplatform for audio generation and livecoding.
MIT licence

Early stages



Why repurpose a Ul framework for music/livecoding?

It turns out a lot of features useful for Ul development can be repurposed.
Lower barrier to entry for developers familiar with the Ul framework.

Ul framework does a lot of the work, like state management, animating values,
dynamically adding/removing building blocks.

IntelliJ/Android Studio allow previewing Ul right in the IDE with live updates.



Ul: Fundamental building blocks

In frameworks like Compose (or React), fundamental building blocks are:

Layout (e.g. rows and columns)

Ul components (e.g. buttons or text fields)

Stateful values, leveraging state management features
Animations (values changing over time)

Effects (perform an action when a component enters or leaves the
composition/DOM tree)

e Making values accessible from anywhere in the tree (e.g. theming)



Music: Fundamental building blocks

Timing: playing simultaneously or in order, expressing rhythms
Sounds, like those from a synth or playing samples

Stateful values that update and change the music as it plays

Values changing over time

Scheduling/cancelling audio when things change

Making controls (e.g. volume, BPM) available throughout the program



Managing state

Compose provides State (similar to React’s useState hook)

Compose tree updates when state changes:

val synth by remember { mutableStateOf (Synth.Piano) }

Synth (synth = synth) { .. }



Making it work: Effects

DaKapo { .. }
Uses effects to schedule/cancel audio

Compose provides DisposableEffect (similar to React’s useEffect hook)

10



Making values accessible throughout the Compose tree

Useful for things like volume or BPM

Compose provides CompositionLocal (similar to React’s Context)

@Composable

fun AbsoluteVolume (volume: Float, sound: @Composable () ->
Unit): Unit =

CompositionLocalProvider (LocalVolume provides volume, sound)

11



Relative volume

@Composable
fun RelativeVolume (volume: Float, sound: @Composable
val currentVolume = LocalVolume.current
CompositionLocalProvider (
LocalVolume provides volume * currentVolume,

sound

}

We can do the same thing for BPM or relative tempo.

()

-> Unit)

{

12



Implementing building blocks: Synths and Samples

For now, basic implementation from the ground up.

Synths and samples are scheduled through effects. The blocks they are
embedded in can modify the sound:

Bpm (60)
AbsoluteVolume (0.8) {

Synth (Synth.Piano) {..}

13



Requirement: Envelope shaping

Makes sounds more realistic

Envelope shaping

E.g. ADSR envelope 120

What should the API for this look like? ™

80

60

amplitude

40

20

0

500

1,000
time [ms]

1,500

2,000

14



We could use blocks

Envelope (attack = ..,

Synth (..) {..}

)

{

15



Compose: Modifiers

Compose provides Modifiers:
Column (modifier = Modifier.fillMaxHeight ()) { .. }
Modifiers can be specified on any composable, and affect the way it renders.

Modifiers can be used for sizing, borders, padding etc.

16



DaKapo: Conditioners

DaKapo uses Conditioners in an analogy to Compose Modifiers:

Synth (conditioner = Conditioner.envelope (attack = ..
Instead of:
Reverb (...) {

Synth (..) {..}

}

We can write:

Synth (conditioner = Conditioner.reverb(..), ..) {..

}

17



Basic timings and simultaneous play

We introduce timing primitives like InParallel, CycleOver, and SplitEqually
This allows us to express basic timings:

InParallel {
A()
CyleOver {
B()
SplitEqually {
C()
D()

18



Creating a drum machine

We can add functions like Snare () or Cymbal () to play drum samples.

Using a Drums (machine = ..) {..} block, we can switch out the drum machine
for one that plays different samples, or synthesises the drum sounds.

Under the hood, we’ll again use CompositionLocal.

19



Expressing rhythms more conveniently

Rhythm ("xy xx y",

'x' to { Snare()

by

'y' to { Cymbal()})

20



ConstraintLayout

In Compose, we can anchor Ul components to other components instead of building grid-based layouts.
This is sometimes much more convenient.

ConstraintLayout ({
val (button, text) = createRefs|()
Button (..,
modifier = Modifier.constrainAs (button) {
top.linkTo (parent.top)
}

) { Text (text = "Button") }
Text (
text = "Text",
modifier = Modifier.constrainAs (text) {

top.linkTo (button.bottom)

21



Connecting audio building blocks

We can use a similar mechanism to connect audio building blocks:

Connections { output ->

val (generator, delay, reverb) = createRefs()
SineWave (.., conditioner = Conditioner.connectAs (generator))
Delay (..,
conditioner = Conditioner.connectAs (delay) { accept (generator)}

)
Reverb (..,
conditioner = Conditioner.connectAs (reverb) {
accept (delay)
feed (output)

22



Supporting multiple platforms

Compose Multiplatform works on various platforms (Android,
Desktop/JVM, Web, iOS)

On Desktop, we are using the Java Sound API

On Android, the AudioTrack API

Both allow synchronously pushing bytes into a stream for playback
Created async wrappers

16-bit PCM is well-supported across platforms; we’'ll leverage this to add iOS
support as well as a JavaScript/WASM target

23



Reinventing the wheel, or leveraging powerful libraries?

Right now, implementing audio building blocks from scratch.
It's been enjoyable, and a great way to learn the fundamentals.

But eventually, we'll want something more powerful, e.g. SuperCollider
(at least on Desktop)

Requires carefully abstracting features and ensuring audio backends on various
platforms support them consistently.

24



Optimisations

Integrating with a library like SuperCollider allows us to take advantage of its
scheduling features.

Scheduling needs to be precise as small differences in timing matter in music.

But for now, there are ways to improve timing
(e.g. Audio thread priority on Android)

25



Integration with Compose Ul

DaKapo block can be integrated anywhere in the Compose tree
There’s really no requirement for Composables to be Ul elements, but ...

... they can be, e.g. to implement visualisations.

26



amplitude

Visualisations

We can leverage the fact that we’re using a Ul framework already to create

visualisations. Compose provides an integration with Kotlin’s Let’s Plot:

120

100

80

60

40

20

500

1,000
time [ms]

1,500

2,000

amplitude

80

60

40

20

-20

-40

-60

-80

W/

W/

[\

W

W/

4

time [ms]

6

10

27



Thanks for listening — questions?

DaKapo will be available at https://github.com/O-O-Balance/DaKapo

Also, if you have done something similar, or have any expertise to share,
please reach out!

Merlin Pahic

28



