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http://engineering.fb.com/wp-content/uploads/2024/08/sigcomm24-final246.pdf

RDMA is used extensively for GPU-based 
training for proven performance benefits 
• Avoids network stack 
• Allows direct transfers to memory 



High level steps for Training

http://engineering.fb.com/wp-content/uploads/2024/08/sigcomm24-final246.pdf

Step 1: Server Coordination 
exchange of QP + GID Step 3: Data Exchange 

(no kernel)

Step 2: Server Configuration  
( kernel programs NIC and allocate memory)



Case Study: Impact of Syscall Errors at Meta Scale

• On average, 10-20% of AI job crashes per day, are associated with RDMA (not network-
related) 

• For the last 6 month, 32k+ GPU Hours wasted, 5k+ for RDMA subsys 

• Multiple blocking issues for flagship AI model trainings in the past, distracting 10+ people for 
weeks to root-cause and mitigate. 
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Syscall Errors in RDMA Network
• Syscall/Async errors impact 29% of job   

• Manual diagnosis with ftrace 
• Ftrace does not expose call return values 
• Required trace comparison: bad trace is 

shorter! 

• Issue motivated the need for a system 
• Process all NCCL failures in production 
• Dynamically compare traces 
• Localize cause of differences to state 

differences



Why build our RDMATracer with eBPF?

• Linux is still crucial in RDMA systems 
• Performs control and resource accounting 
• Processes all ibverbs ioctls - rdma core (no retries) 

• Building eBPF provides 
• Flexibility: monitor and extract additional data from internal variables  
• Complexity: implement complex aggregation logic 
• Interoperability: no need to modify kernel or runtime
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Challenges Tracing Syscalls

• All RDMA interactions maps to one Syscall 
• Many different paths → significant tracing overheads 
• Heuristic: focus on paths which translate state  

• RDMA hardware state → Software state (Kernel Data structures) 

• BPF provides many options for creating probes 
• Selecting optimal is non trivial 

• Always on probe is expensive 
• Reactive approach to data collection



Scaling Syscall Tracing for RDMA Backend

Used static analysis to create rules to 
prune call path. 
• Avoid reads calls  
• Avoid internals of “pure kernel” functions 
• Avoid “cleanup” or “reference counter” functions 
• Depending on HW vendor, focus on their driver 

system calls
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Traced functions for ib_uverbs_modify_qp 
● modify_qp, 
● rdma_lookup_get_uobject, 
● _ib_modify_qp, 
● ib_resolve_eth_dmac.isra.0, 
● rdma_lag_get_ah_roce_slave, 
● rdma_get_gid_attr, 
● alloc_and_bind, 
● rdma_counter_bind_qp_auto.
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Monitoring Solution Design: Kprobe V Kfunc

• Probe location: KProbe V. kretprobes 
• Kprobes: inserted into any location inside a kernel function. 
• Kretprobes: triggered when a specified function returns. 

• Probe type: K{ret}probe V. fentry/fexit  
• Mostly interested in “what happened” along with input and return val 
• Stable Kernel Interface ? 

• Goal: Lowest possible overhead 
• Measuring overheads with Kernel benchmark tool 
• Validate with NCCL-test tool 



Performance Comparison: Kretprobe v. 
fexit

Across all benchmarks: fexit is roughly 72% of kprobe.

NCCL Benchmark toolKernel Benchmark tool
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Control Plane 
* Decode Context 
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int BPF_PROG( 
	 ned_be_ib_uverbs_modify_qp, 
	 struct uverbs_attr_bundle* attrs, 
	 int retval) { 
	 	 … 

if (retval!=0) { 
	 	 save_err_context(…..); 
	 } 
	 …. 
}

RDMATracer

Solution Design
BPF_MAP_TYPE_RINGBUF  
 ~256 KB buffer  
 ~8K records
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Solution Design
• Shared Maps for all fexit progs 

• Ring Buffer to store err_ctx 
• counter map (per-CPU) tracks how many times a syscall has been invoked. 

There are three types of counters: 
● Type 1: Read as <syscall>, track how many times a syscall has been invoked. 
● Type 2: Read as <syscall>_err, track how many times a syscall has been failed. 
● Type 3: Read as <syscall>_errno, track the errno returned by a syscall upon its 

failure. 

 



Again Performance Comparison: With and 
without BPF
Observations: 
• No major change on host metrics before and after feature enabled. 

• bpf_tax - p50 (88.7% less), p99 (98.9% less) 
• Workflow QPS not impacted by enabling this feature. 
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Auditing System Workflow

● Periodically capture and store “good” traces: 
○ Zero / success as return code 
○ “Quick” syscall completion (not greater than 50ms) 
○ Challenge: there are also cases when syscall returns “non-critical” 

error code as expected - e.g. ENOENT for disabled functionality. 

● Compare those traces with good ones and help narrow down the issue 
○ Looking for bifurcation point to determine which exact spot is failing 

and producing syscall error. 

● Dynamically trigger for a new syscall  (or parameters)



RDMATracer in Production Today

• Significantly reduces diagnosis time from 10+ mins to seconds 
• Enables issue auto classification and accounting 
• Eliminates the need to retrieve and process gigabytes of logs 
• Provides a precise timelines for issues and provides dmesgs to aide correlations 
• Helps identifies driver bugs in vendor locked drivers (black box drivers)



Usecase: Triaging blackbox vendor drivers

AI jobs failed on a newly deployed 
vendor NIC driver (fb v5.19 kernel) 

RDMATracer exported syscall traces 
which helped identify: 
● A chain of syscalls which returned 

the error 
● A mismatch in the return values for 

these syscalls 
● Triaged error to overflow problem

int ib_umem_dmabuf_map_pages:

return dma_resv_wait_timeout

long dma_resv_wait_timeout

NCCL WARN Call to ibv_reg_dmabuf_mr failed 
with error Operation not permitted



Summary

● RDMA syscall errors have a significant impact at scale 
○ 10-20% of Meta's AI job crashes, wasting GPU hours. 

● RDMATracer: eBPF-based tool that proactively detects RDMA device 
driver bugs in real-time. 
○ Scalability from Design Choices: minimize # of probes via Static 

analysis and strategic selection of trace points. 
○ Scalability from eBPF Primitive Selected: fexit over Kretprobes. 

● RDMATracer streamlines diagnosis and auto-classifies issues 
○ Diagnosis reduced from 10+ minutes to seconds 


