RDMATracer: Lessons from scaling BPF
to detect RDMA Device Drivers Bugs In
real time

FOSDEM 2026
Prankur Gupta, Maxim Samoylov, Theophilus A. Benson,

Training Infrastructure at Meta

| S
g | Application
100G [°400G: °
SW . : N\ /_i\

Networking
| Stack

RDMA is used extensively for GPU-based
training for proven performance benefits

* Avoids network stack

e Orndcon pladorn » Allows direct transfers to memory

http://engineering.fb.com/wp-content/uploads/2024/08/sigcomm24-final246.pdf

High level steps for Training

Step 2: Server Configuration
(kernel programs NIC and allocate memory)

Frontend Al Rack | Backend

Step 1: Server Coordination

exchange of QP+ GID__; e @sStep 3: Data Exchange
- > (no kernel)
FSW FSW —9\\/“
|FSW FSW 'CT—SEI

Host 2

Data Ingestion

Figure 5: Frontend and Backend networks

http://engineering.fb.com/wp-content/uploads/2024/08/sigcomm24-final246.pdf

Case Study: Impact of Syscall Errors at Meta Scale

Emm RDMA
All syscall

—— RDMA

- All syscall 30000,

o
o
o

25000

(*)}
o
o

20000

EaN
o
o

15000+

of Job Failures

W
)
)
1)

10000+

5000+

0
2025-05 2025-06 2025-07 2025-08 2025-09 2025-10 2025-11 |
Time GPU Wasted Hours Job failures

. Or|1 ?vc?)rage, 10-20% of Al job crashes per day, are associated with RDMA (not network-
relate

* For the last 6 month, 32k+ GPU Hours wasted, 5k+ for RDMA subsys

e Multiple blocking issues for flagship Al model trainings in the past, distracting 10+ people for
weeks to root-cause and mitigate.

RDMA stack - Control Path

RDMA
Tracer

C

Application

layer

Communication

layer

Verbs
layer

Kernel
layer

Driver
layer

C

NIC
layer

)

> Pytorch

NCCL

RDMA-Core

uverbs cmd.c

vendor/core

-

A 4

nccllbConnect()

nccllbCreateQp()

ibv_create qp()

create_qp()

vendor_core_create_qp()

VENDOR_CMD_QP_CREATE

Syscall Errors in RDMA Network

T ENODATA

ibv._modify gp

User space

Kernel space

ENODATA

ib_uverbs

modify qp

A

3
ENODATA

modify_qp

A

3
ENODATA

ib_modify gqp with udata

4

A

ENODATA

Failure
point

rdma_fill sgid attr

« Syscall/Async errors impact 29% of job

« Manual diagnosis with ftrace
» Ftrace does not expose call return values

» Required trace comparison: bad trace is
shorter!

* |Issue motivated the need for a system
* Process all NCCL failures in production
« Dynamically compare traces

* Localize cause of differences to state
differences

Why build our RDMATracer with eBPF?

* Linux is still crucial in RDMA systems Application

« Performs control and resource accounting
* Processes all ibverbs ioctls - rdma core (no retries)

* Building eBPF provides
 Flexibility: monitor and extract additional data from internal variables
« Complexity: implement complex aggregation logic
* Interoperability: no need to modify kernel or runtime

Challenges Tracing Syscalls

* All RDMA interactions maps to one Syscall
« Many different paths — significant tracing overheads

» Heuristic: focus on paths which translate state
« RDMA hardware state — Software state (Kernel Data structures)

»

* BPF provides many options for creating probes
« Selecting optimal is non trivial

» Always on probe is expensive
» Reactive approach to data collection

Scaling Syscall Tracing for RDMA Backend

Used static analysis to create rules to

prune call path.
Avoid reads calls
* Avoid internals of “pure kernel” functions
* Avoid “cleanup” or “reference counter” functions
* Depending on HW vendor, focus on their driver
system calls

Scaling Syscall Tracing for RDMA Backend

Used static analysis to create rules to

prune call path.
Avoid reads calls
» Avoid internals of “pure kernel” functions
* Avoid “cleanup” or “reference counter” functions
« Depending on HW vendor, focus on their driver

system calls
Traced functions for ib_uverbs_modify_gp
e modify_gp,
e rdma_lookup_get_uobject,
e _ib_modify_qgp,
e ib_resolve_eth_dmac.isra.o,
e rdma_lag_get_ah_roce_slave,
e rdma_get_gid_attr,
e alloc_and_bind,
e rdma_counter_bind_gp_auto.

Challenges Tracing Syscalls

* All RDMA interactions maps to one Syscall
« Many different paths — significant tracing overheads

» Heuristic: focus on paths which translate state
« RDMA hardware state — Software state

* BPF provides many options
« Selecting optimal is non trivial

»

* Always on probe is expensive
» Reactive approach to data collection

Monitoring Solution Design: Kprobe V Kfunc

* Probe location: KProbe V. kretprobes
« Kprobes: inserted into any location inside a kernel function.
» Kretprobes: triggered when a specified function returns.

* Probe type: K{ret}probe V. fentry/fexit
« Mostly interested in “what happened” along with input and return val
« Stable Kernel Interface ?

» Goal: Lowest possible overhead
* Measuring overheads with Kernel benchmark tool
 Validate with NCCL-test tool

Performance Comparison: Kretprobe v.
fexit

Benchmark: kretprobe vs fexit Avg Execution Time per Function: kprobe vs fexit

3.5 80
3.0 1 701
@ 60 1
S 2.5 £
Q c
3
ﬁ & 50 A
S 2.0 g
g [
= £ 40
S F
E 1.5 g
z S 301
z
1.0 1
20 A
0.5 | 10 4
0.0 - 0-
kretprobe fexit ib_uverbs,

Kernel Benchmark tool NCCL Benchmark tool

be

[kretprol
| m—

Across all benchmarks: fexit is roughly 72% of kprobe.

Solution Design

BPF_MAP_TYPERINGBUF| ~~ -~ ~"~~"~"~"~"~—~"===----=----~ -
~256 KB buffer \\\ /\
~8K records 4 \\‘ >

| Control Plane
* Decode Context
Useqr * Publish to Scuba

spaqe /\’ > /.

Observability DB
(Meta’s Scuba)

N~

4 N\
4 N\
4 N\
4 N
\. Fexit / int BPF_PROG(
_ b 3 ned_be_ib_uverbs_modify_qgp,
\\ prooes \ struct uverbs_attr_bundle* attrs,
int retval) {
\ /| .
) if (retval!=0) {
R D M ATra Ce r R4 save_err_context(.....);

Solution Design

« Shared Maps for all fexit progs
- Ring Buffer to store err_ctx
counter map (per-CPU) tracks how many times a syscall has been invoked.

There are three types of counters:

e Type 1: Read as <syscall>, track how many times a syscall has been invoked.
e Type 2: Read as <syscall>_err, track how many times a syscall has been failed.
e Type 3: Read as <syscall>_errno, track the errno returned by a syscall upon its

e) [{("syscall":'mix5_ib_post_send","errmsg":"Input/output 0
Sun, Nov 30, 2025 12:19:48 AM (PST) 1 580.82.07 6.13.2-0_fbk7_0_gbc14455e13aa O | it e i "procaea®Meniaer Mivesiarme 11 /80/25 0011945)
Wed, Nov 26, 2025 06:21:04 AM (PST) 1 570.124.06 6.9.0-0_fbk10_0_gc5fa564d33e3 g [('syscall'"ib_peer_umem_get',"ermsg"."Cannot allocate

memory","errno":12,"process":"rdmaC_mix5_2","timestamp":"11/26/ ...

Again Performance Comparison: With and
without BPF

Observations:
No major change on host metrics before and after feature enabled.
bpf_tax - p50 (88.7% less), p99 (98.9% less)

uuuuuuuuuuuu

CPU utilization (in %)

Feature not enabled H taste-tester & chef run | Feature enabled
B y — > | — e
' '
' '
20 ' !
'
1s 1 -
\, = [R 1
o ' '
T '
= L] 1
s = ' '
' '
° ' '
- +
' oss :
twshared19672.04 tdshared19676.04.0nb6 == twshared19668.04.0nb6
i

b6 == twshared19667.04.pnb6 twshared19684.04.pnb6 == twshared20012.04

Memory Utilization (in %)

Network Utilization (in %)

Challenges Tracing Syscalls

* All RDMA interactions maps to one Syscall
« Many different paths — significant tracing overheads

» Heuristic: focus on paths which translate state
« RDMA hardware state — Software state

* BPF provides many options
« Selecting optimal is non trivial

* Always-on probe is expensive
» Reactive approach to data collection

Auditing System Workflow

e Periodically capture and store “good” traces:
o Zero / success as return code
o “Quick” syscall completion (not greater than 50ms)
o Challenge: there are also cases when syscall returns “non-critical”
error code as expected - e.g. ENOENT for disabled functionality.

e Compare those traces with good ones and help narrow down the issue
o Looking for bifurcation point to determine which exact spot is failing
and producing syscall error.

e Dynamically trigger for a new syscall (or parameters)

RDMATracer in Production Today

Total Error Count by Error Message

s RDMA

30000, All syscall

25000
20000
15000+
10000

5000+

GPU Wasted Hours Job failures

« Significantly reduces diagnosis time from 10+ mins to seconds
- Enables issue auto classification and accounting
- Eliminates the need to retrieve and process gigabytes of logs
 Provides a precise timelines for issues and provides dmesgs to aide correlations
* Helps identifies driver bugs in vendor locked drivers (black box drivers)

Usecase: Triaging blackbox vendor drivers

Al jobs failed on a newly deployed
vendor NIC driver (fb v5.19 kernel)

NCCL WARN Call to ibv_reg_dmabuf_mr failed
with error Operation not permitted

RDMATracer exported syscall traces
which helped identify:

e A chain of syscalls which returned
the error

e A mismatch in the return values for
these syscalls

e Triaged error to overflow problem

int ib_umem_dmabuf_map_pages:

<>

return dma_resv_wait_timeout

<>

long dma_resv_wait_timeout

Summary

e RDMA syscall errors have a significant impact at scale
o 10-20% of Meta's Al job crashes, wasting GPU hours.

e RDMATracer:. eBPF-based tool that proactively detects RDMA device
driver bugs in real-time.
o Scalability from Design Choices: minimize # of probes via Static
analysis and strategic selection of trace points.
o Scalablility from eBPF Primitive Selected: fexit over Kretprobes.

e RDMATracer streamlines diagnosis and auto-classifies issues
o Diagnosis reduced from 10+ minutes to seconds

