
RDMATracer: Lessons from scaling BPF
to detect RDMA Device Drivers Bugs in

real time
FOSDEM 2026

Prankur Gupta, Maxim Samoylov, Theophilus A. Benson,

Training Infrastructure at Meta

RNIC

Application

Kernel

Networking
Stack

http://engineering.fb.com/wp-content/uploads/2024/08/sigcomm24-final246.pdf

RDMA is used extensively for GPU-based
training for proven performance benefits
• Avoids network stack
• Allows direct transfers to memory

High level steps for Training

http://engineering.fb.com/wp-content/uploads/2024/08/sigcomm24-final246.pdf

Step 1: Server Coordination
exchange of QP + GID Step 3: Data Exchange

(no kernel)

Step 2: Server Configuration
(kernel programs NIC and allocate memory)

Case Study: Impact of Syscall Errors at Meta Scale

• On average, 10-20% of AI job crashes per day, are associated with RDMA (not network-
related)

• For the last 6 month, 32k+ GPU Hours wasted, 5k+ for RDMA subsys

• Multiple blocking issues for flagship AI model trainings in the past, distracting 10+ people for
weeks to root-cause and mitigate.

Application
layer

Pytorch

Communication
layer

NCCL

Verbs
layer

RDMA-Core

Kernel
layer

uverbs_cmd.c

Driver
layer

vendor/core

NIC
layer

ncclIbConnect()

ncclIbCreateQp()

ibv_create_qp()

create_qp()

vendor_core_create_qp()

VENDOR_CMD_QP_CREATE

RDMA stack - Control Path

RDMA
Tracer

Syscall Errors in RDMA Network
• Syscall/Async errors impact 29% of job

• Manual diagnosis with ftrace
• Ftrace does not expose call return values
• Required trace comparison: bad trace is

shorter!

• Issue motivated the need for a system
• Process all NCCL failures in production
• Dynamically compare traces
• Localize cause of differences to state

differences

Why build our RDMATracer with eBPF?

• Linux is still crucial in RDMA systems
• Performs control and resource accounting
• Processes all ibverbs ioctls - rdma core (no retries)

• Building eBPF provides
• Flexibility: monitor and extract additional data from internal variables
• Complexity: implement complex aggregation logic
• Interoperability: no need to modify kernel or runtime

RNIC

Application

Kernel

Networ
k

Stack

Challenges Tracing Syscalls

• All RDMA interactions maps to one Syscall
• Many different paths → significant tracing overheads
• Heuristic: focus on paths which translate state

• RDMA hardware state → Software state (Kernel Data structures)

• BPF provides many options for creating probes
• Selecting optimal is non trivial

• Always on probe is expensive
• Reactive approach to data collection

Scaling Syscall Tracing for RDMA Backend

Used static analysis to create rules to
prune call path.
• Avoid reads calls
• Avoid internals of “pure kernel” functions
• Avoid “cleanup” or “reference counter” functions
• Depending on HW vendor, focus on their driver

system calls

Scaling Syscall Tracing for RDMA Backend
Used static analysis to create rules to
prune call path.
• Avoid reads calls
• Avoid internals of “pure kernel” functions
• Avoid “cleanup” or “reference counter” functions
• Depending on HW vendor, focus on their driver

system calls

Traced functions for ib_uverbs_modify_qp
● modify_qp,
● rdma_lookup_get_uobject,
● _ib_modify_qp,
● ib_resolve_eth_dmac.isra.0,
● rdma_lag_get_ah_roce_slave,
● rdma_get_gid_attr,
● alloc_and_bind,
● rdma_counter_bind_qp_auto.

Challenges Tracing Syscalls

• All RDMA interactions maps to one Syscall
• Many different paths → significant tracing overheads
• Heuristic: focus on paths which translate state

• RDMA hardware state → Software state

• BPF provides many options
• Selecting optimal is non trivial

• Always on probe is expensive
• Reactive approach to data collection

Monitoring Solution Design: Kprobe V Kfunc

• Probe location: KProbe V. kretprobes
• Kprobes: inserted into any location inside a kernel function.
• Kretprobes: triggered when a specified function returns.

• Probe type: K{ret}probe V. fentry/fexit
• Mostly interested in “what happened” along with input and return val
• Stable Kernel Interface ?

• Goal: Lowest possible overhead
• Measuring overheads with Kernel benchmark tool
• Validate with NCCL-test tool

Performance Comparison: Kretprobe v.
fexit

Across all benchmarks: fexit is roughly 72% of kprobe.

NCCL Benchmark toolKernel Benchmark tool

sdfassafsdf

Observability DB
(Meta’s Scuba)

Control Plane
* Decode Context
* Publish to Scuba

Fentry
ProbesFentry

ProbesFentry
ProbesFentry

ProbesFexit
probes

int BPF_PROG(
	 ned_be_ib_uverbs_modify_qp,
	 struct uverbs_attr_bundle* attrs,
	 int retval) {
	 	 …

if (retval!=0) {
	 	 save_err_context(…..);
	 }
	 ….
}

RDMATracer

Solution Design
BPF_MAP_TYPE_RINGBUF
 ~256 KB buffer
 ~8K records

Kernel
space

User
space

Solution Design
• Shared Maps for all fexit progs

• Ring Buffer to store err_ctx
• counter map (per-CPU) tracks how many times a syscall has been invoked.

There are three types of counters:
● Type 1: Read as <syscall>, track how many times a syscall has been invoked.
● Type 2: Read as <syscall>_err, track how many times a syscall has been failed.
● Type 3: Read as <syscall>_errno, track the errno returned by a syscall upon its

failure.

Again Performance Comparison: With and
without BPF
Observations:
• No major change on host metrics before and after feature enabled.

• bpf_tax - p50 (88.7% less), p99 (98.9% less)
• Workflow QPS not impacted by enabling this feature.

Challenges Tracing Syscalls

• All RDMA interactions maps to one Syscall
• Many different paths → significant tracing overheads
• Heuristic: focus on paths which translate state

• RDMA hardware state → Software state

• BPF provides many options
• Selecting optimal is non trivial

• Always-on probe is expensive
• Reactive approach to data collection

Auditing System Workflow

● Periodically capture and store “good” traces:
○ Zero / success as return code
○ “Quick” syscall completion (not greater than 50ms)
○ Challenge: there are also cases when syscall returns “non-critical”

error code as expected - e.g. ENOENT for disabled functionality.

● Compare those traces with good ones and help narrow down the issue
○ Looking for bifurcation point to determine which exact spot is failing

and producing syscall error.

● Dynamically trigger for a new syscall (or parameters)

RDMATracer in Production Today

• Significantly reduces diagnosis time from 10+ mins to seconds
• Enables issue auto classification and accounting
• Eliminates the need to retrieve and process gigabytes of logs
• Provides a precise timelines for issues and provides dmesgs to aide correlations
• Helps identifies driver bugs in vendor locked drivers (black box drivers)

Usecase: Triaging blackbox vendor drivers

AI jobs failed on a newly deployed
vendor NIC driver (fb v5.19 kernel)

RDMATracer exported syscall traces
which helped identify:
● A chain of syscalls which returned

the error
● A mismatch in the return values for

these syscalls
● Triaged error to overflow problem

int ib_umem_dmabuf_map_pages:

return dma_resv_wait_timeout

long dma_resv_wait_timeout

NCCL WARN Call to ibv_reg_dmabuf_mr failed
with error Operation not permitted

Summary

● RDMA syscall errors have a significant impact at scale
○ 10-20% of Meta's AI job crashes, wasting GPU hours.

● RDMATracer: eBPF-based tool that proactively detects RDMA device
driver bugs in real-time.
○ Scalability from Design Choices: minimize # of probes via Static

analysis and strategic selection of trace points.
○ Scalability from eBPF Primitive Selected: fexit over Kretprobes.

● RDMATracer streamlines diagnosis and auto-classifies issues
○ Diagnosis reduced from 10+ minutes to seconds

