
Peergos:
Capability-Based
Access Control for an
Encrypted Web

Dr Ian Preston
Co-founder, CEO

1

The web is under attack

empower people

improve lives

protect democracy

surveillance

control

coercion

2

A better foundation

E2EE
host idependent
self-sovereign identity
protect metadata, including social graph

3

Peergos: a protocol for agency

Global, E2EE social filesystem
Fine-grained access control
Signed content-addressed (host
independent)
Automatic host migration
(preserving links)
Sandboxed apps/sites
Portable, self-sovereign identity

4

The server is an adversary

1. Content-addressed data
2. Signed updates
3. End-to-end encryption

→ location independent addressing (host
independence)

5

Signed merkle forest

6

Signed merkle forest

7

Signed merkle forest

8

CHAMP

compressed hash-array mapped prefix-trie
key value store
independent of insertion order (unlike btree)
balanced

Keys are random 32 bytes

Values are cryptree nodes (encrypted metadata)

Each cryptree node can link to 5 encrypted blocks

9

Immutable state - file system CHAMP

10

Cryptree metadata privacy

Host cannot see:

file sizes
file vs dir
file/folder names
folder topology
social graph
who or how many have access to a file/blob.

11

Capabilities and Access Control

12

Capabilities (Caps)

Pure information, not identity-based
Works in secret links etc.
Can be revoked

13

Read Cryptree

14

Write Cryptree

15

Fast file seeking

How do we get cap to later chunks of a file?

mapkey => sha256(stream-secret + mapkey)

bat => sha256(stream-secret + bat)

1. local hashing
2. a single champ.get to retrieve the encrypted

metadata
3. up to 5 block.get calls for fragments

16

DEMO
Fast seeking within a movie

17

Websites and Applications

18

Exfiltration-proof apps

run untrusted code over private data
an app can't exfiltrate data
an app can't read anything it's not granted acess to
works in existing browsers, without add-ons
simple REST API (without a server!)

19

Application authoring

just a folder of HTML5
author controls visibility
basic permissions (e.g. register for certain file
types)
frictionless publishing - drag and drop
0 permissions = private website

20

Application sandbox

21

What can an app do?

Edit files

Word processor

22

What can an app do?

Edit files

Word processor
Spreadsheets

23

What can an app do?

Edit files

Word processor
Spreadsheets
Image editor

24

What can an app do?

Edit files

Word processor
Spreadsheets
Image editor
Markdown editor

25

What can an app do?

Edit files

Word processor
Spreadsheets
Image editor
Markdown editor
Tiddlywiki notebooks

26

What else can an app do?

Media player

27

What else can an app do?

Media player
Multiplayer games

28

What else can an app do?

Media player
Multiplayer games
Chat

29

What else can an app do?

Media player
Multiplayer games
Chat
Doom

More example apps:
github.com/peergos/example-apps

30

https://github.com/peergos/example-apps

DEMO
Some apps

31

Social media
most social media is bad for society

Allows micro targeted political profiling
Designed to be addictive

normal in-person conversations are good for
society
Peergos social media is modelled on in-person
conversations

32

Social feed

33

Without privacy, there can be no democracy.

34

Have fun!

1. Self host, or sign up: peergos.net

2. Write your own apps

3. Protect yourself and democracy

Questions?

Dr Ian Preston

ian@peergos.org

peergos.org

@peergos

35

"The defence of privacy will be the
saviour of the future."
- Gus Hosein,

Executive Director Privacy International

36

Block Access Tokens (BATs)

Don't put encryped data in public!
Post-quantum ciphertext access
control
2 BATs per block
Send S3 V4 sig (89 bytes) with hash
Tied to requesting peer-id and time
Recipient verifies signature against
requesting peer-id and the BAT

37

Inline BATs

BAT = 32 random bytes

CBOR

RAW

38

Why is privacy so important?

Fundamental human right

"No one shall be subjected to arbitrary interference
with his privacy, family, home or correspondence."
The Universal Declaration of Human Rights

39

Necessary for democracy
Without privacy:

Mass surveillance
Monitoring and crushing dissent
Voter manipulation from profiling
Swinging elections

40

What happens when you visit a website?

41

DNS lookup
TLS connection (trust 140 CAs)
Arbitrary code from server
Load 3rd party code
Login to site?
Send personal data to server?
Manipulation by AI curated feed
Subverted democracy, compromised
consensus

42

Can a better design fix these problems?

43

Requirements
Protect against 3rd and 1st party surveillance
Remove incentives that resulted in surveillance
capitalism
Return data and identity ownership to users
Take your data between hosts and apps
Work in existing browsers
Work offline

44

File upload

45

File upload

46

File upload

47

File upload

48

Cryptree format

49

Retrieving a capability (PKI)

1. Use PKI (locally) to look up owner's host peer-id

PKI: username => signed(username, host, identity)

50

Retrieving a capability (mutable)

2. P2P HTTP request to host to get mutable pointer
for writer

3. Verify signature and sequence for pointer
4. Get root hash from pointer

51

Retrieving a capability (immutable metadata)

5. champ.get(root, map key, BAT) => blocks
(P2P HTTP request)

6. Repeat CHAMP lookup locally with returned blocks
7. Use read key to decrypt cryptree node, and get

metadata

52

Retrieving a capability (immutable data)

8. Get blocks for any chunk fragments using BATs
and hashes in cryptree node

9. Concat blocks and decrypt (max 5 MiB)

10. Calculate next chunk's map key =

sha256(stream-secret + current chunk map key)

11. Repeat steps 5-10

53

Browser app

special app that renders folders of HTML
isolates different folders
internal links (relative)
external links /peergos/username/path/to/file.html
works in secret links!
markdown pages work!

54

Login

55

Login security

humans shouldn't create passwords
generate password - 7 words from 2048 word list
generated passwords have 7*11 = 77 bits of entropy
GPU can calculate ~1M scrypt hashes per second
1 GPU would take 5 billion years
1 million GPUs would take 5000 years

56

Brute forcing a login (after hacking server)

57

Social

follow request to open encrypted channel
encrypted inbox for follow requests

58

App structure

assets/index.html
peergos-app.json

With STORE_APP_DATA permission

data/

59

App manifest

Open a file of a certain type
fileExtensions, fileTypes and mimeTypes
wildcard supported

{
 "displayName": "Painter",
 "description": "MS Paint clone,
 "version": "1.0.7",
 "author": "alice",
 "launchable": true,
 "folderAction": false,
 "appIcon": "icon.png",
 "fileExtensions": ["jpg","png"],
 "fileTypes":["image"],
 "permissions": ["EDIT_CHOSEN_FILE"]
}

60

Permissions

STORE_APP_DATA
EDIT_CHOSEN_FILE
READ_CHOSEN_FOLDER
EXCHANGE_MESSAGES_WITH_FRIENDS
ACCESS_PROFILE_PHOTO

61

Run parameters

Passed via query parameters

path
isPathWritable
theme

62

REST API

Write and get app-private data:
/peergos-api/v0/data/path.to.file

POST a HTML form and store the results:
/peergos-api/v0/form/path.to.file

Send async messages to friends:
/peergos-api/v0/chat/

63

Files REST HTTP API

GET - get file or dir
GET(?preview=true) - get thumbnail
POST - create file
PUT - update file
DELETE - delete file
PATCH - append to a file

64

Chat REST API
list all chats created by this app (GET)
* /peergos-api/v0/chat/

create chat (POST => chatId)
* /peergos-api/v0/chat/

get messages by local index (GET)
* /peergos-api/v0/chat/:chatId?from=0&to=100

send message (PUT - text: message)
* /peergos-api/v0/chat/:chatId

65

Concurrent GC

Kubo GC with 1 TiB S3 blockstore takes ~24 hours
whilst holding a global lock
V1 of Peergos GC takes 2 hours on same size
blockstore, fully concurrent (no locks)
V2 takes 7 mins!

66

How does writing blocks work?

1. startTransaction => tid
2. write blocks tagged with tid
3. commit new root to mutable pointers
4. closeTransaction(tid)

67

GC algorithm

1. List blockstore
2. List GC roots
3. List uncomitted writes (block writes are tagged

with a tid)
4. Mark reachable (parallel) (skip raw blocks)
5. Delete unreachable (parallel)

68

V2 - block metadata

Store cid => links: list[cid], size in database
total size ~0.05% of blockstore size
avoid retrieving and parsing blocks during GC

69

Bandwidth with S3 blockstore

70

Direct S3 blockstore reads

71

Direct S3 blockstore writes

72

What's in a directory?

Semantically a dir is list[children]

list[cap]
list[relative cap] ==> fast revocation
list[named relative cap] ==> fast get-by-path

list[(name, [writer], map key, BAT, read key)]

73

Build security

reproducible builds, both server and front end
Don't use npm! Only 12 JS dependencies, all
vendored
Have our own simple, deterministic replacement
for webpack
self host all assets
Most of the client code is written in a type-safe
language (Java) and cross-compiled to JS

74

PEERGOS.ORG ♦ IAN PRESTON ♦ @IANOPOLOUS@INFOSEC.EXCHANGE
75

